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Abstract
Hierarchical neural models for temporal relation extraction in clinical narratives have gained remarkable attention
due to their capacity for capturing complex textual structures and contextual features across varying granularities
of biomedical data. Clinical documents typically contain diverse references to events, which include symptom
onset, therapeutic interventions, diagnostic measures, and disease progression. The ability to determine the precise
temporal ordering of these events plays a crucial role in patient care, decision support, and retrospective analyses
of disease trajectories. By leveraging hierarchical architectures, it becomes feasible to integrate multiple levels
of representation, from word-level embeddings to document-level discourse patterns, in order to detect intricate
temporal relationships among recorded clinical events. This paper aims to establish a new perspective on how to
encode multi-scale contextual signals for robust recognition of temporal relations. It does so by examining formal
modeling methodologies in conjunction with deep neural architectures that account for local syntactic cues and
global narrative coherence. Our approach utilizes advanced methods to ensure comprehensive coverage of clinical
text structures, coupled with suitable optimization strategies to maximize generalization performance in various
clinical environments. Experimental results suggest that hierarchical neural frameworks provide clear advantages
in the consistency, interpretability, and completeness of temporal relation extraction outputs. These findings lay a
foundation for scalable deployment of automated temporal reasoning in emerging clinical applications.

1. Introduction

The field of temporal relation extraction in clinical narratives addresses the systematic identification
and classification of time-oriented dependencies among medical events, diagnoses, interventions, and
patient states [1]. Such dependencies drive essential components of patient care, especially in deciding
treatment regimens, predicting disease progression, and customizing follow-up schedules based on prior
observations [2]. Despite longstanding interest in medical natural language processing, the intricate
nature of clinical text, including the presence of domain-specific terminology, ambiguous temporal
indicators, and context-dependent references, has posed significant challenges [3]. In order to tackle
these challenges, researchers have introduced various models, from rule-based systems that rely on
manually created knowledge bases to advanced neural architectures that learn patterns from large-scale
annotated corpora.

Hierarchical neural models have emerged as an especially promising approach, given their ability to
integrate linguistic cues from multiple levels of abstraction [4]. These models often rely on word-level
embedding layers, phrase-level or sentence-level recurrent cells, and document-level contexts to capture
the temporal flow and organization of a clinical narrative [5]. In a typical scenario, a patient’s record
might describe several related events, such as the onset of symptoms, administration of a particular
medication, performance of a diagnostic test, detection of adverse outcomes, and prescription changes.
Each of these events may be referenced in text with different degrees of clarity [6]. Some references are
straightforward, featuring explicit temporal markers, whereas others rely on relative language, negations,
or elliptical constructions to convey subtle time references [7]. The hierarchical model structure, which
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sequentially aggregates local information into broader contexts, is designed to capture these nuanced
signals in a manner that flat models often fail to replicate.

Despite progress in this area, there remain unresolved questions regarding how best to represent
temporal constructs in hierarchical architectures [8]. One line of inquiry concerns the interplay between
the syntactic properties of a sentence and the broader semantic flow of the narrative [9]. Another
pertains to the incorporation of external ontological knowledge to handle domain-specific terms that
frequently occur in clinical narratives. The notion of interpretability is also salient, since medical
practitioners value transparent explanations of model outputs [10, 11]. A hierarchical neural framework
that explicitly accounts for multiple granularities can, in principle, offer more traceable reasoning about
how a predicted temporal relationship is derived, although additional complexities arise when attempting
to unify symbolic representations of clinical knowledge with distributed embeddings [12].

The focus of this paper is on constructing and analyzing a hierarchical neural system dedicated
to extracting temporal relations in clinical text. We discuss the theoretical foundations that guide this
approach, from formal definitions of temporal logic and linear algebraic representation of textual entities
to advanced deep learning techniques that expand upon standard recurrent neural networks [13]. We
also outline a data representation strategy, emphasizing the challenges and solutions related to encoding
multi-token events, time expressions, and their associated semantic attributes [14]. We then present
the core methodology, detailing how we build a multi-level model that handles local sequences while
preserving a global sense of textual structure. Following this, we delve into experimental considerations,
showing how our method performs on benchmark datasets and clarifying important implementation
details, including optimization objectives, hyperparameter choices, and error analysis approaches [15].
We conclude by summarizing the implications of our results for future research directions and clinical
practice, underlining the potential for hierarchical neural models to become an integral component of
state-of-the-art clinical decision support systems. [16]

2. Theoretical Foundations

The study of temporal relations in clinical narratives has been extensively informed by developments
in both logic-based systems and machine learning paradigms. From a logical standpoint, the formal
expression of time is often grounded in linear temporal logic (LTL) or interval temporal logic (ITL)
[17]. A fundamental assumption in many temporal logic frameworks is the ordering of time into
discrete or continuous intervals, which align well with how clinicians record patient histories [18].
Let us define a domain of events E, where each event e is associated with a timestamp 𝜏(𝑒) or an
interval [𝜏start (𝑒), 𝜏end (𝑒)]. If we denote two events by 𝑒1 and 𝑒2, the temporal relation 𝑅(𝑒1, 𝑒2) can be
conceptualized as a logical predicate that may take on values in a predefined set, such as Before, After,
Overlap, or simultaneous Co-occur. Symbolically, one might write: [19]

∀𝑒1, 𝑒2 ∈ 𝐸, 𝑅(𝑒1, 𝑒2) →
(
𝜏end (𝑒1) < 𝜏start (𝑒2)

)
∨
(
𝜏start (𝑒1) = 𝜏start (𝑒2)

)
∨ . . .

as a way to encode the possible relationships between events within a logical schema. [20]
In parallel to these logical formalisms, deep learning techniques have introduced embedding-based

representations for textual units, capturing semantic and syntactic information in dense vector forms.
Suppose we have a vocabulary 𝑉 of clinical tokens, and each token 𝑡 ∈ 𝑉 is mapped to an embedding
vector w𝑡 ∈ R𝑑 . In a hierarchical neural model, these embeddings are processed in successive layers [21].
One might define a sentence-level recurrent neural network that transforms a sequence of embeddings
{w𝑡1 ,w𝑡2 , . . . ,w𝑡𝑛 } into a sequence of hidden states {h1, h2, . . . , h𝑛}. This can be described by: [22]

h𝑖 = 𝑓 (Wℎ𝑥w𝑡𝑖 + Wℎℎh𝑖−1 + bℎ)

where Wℎ𝑥 and Wℎℎ are weight matrices, bℎ is a bias vector, and 𝑓 (·) is a nonlinear activation function.
A document-level mechanism then further transforms the sentence representations {s1, s2, . . . , s𝑚} into
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an aggregated context vector d, which can inform the classification of event-event relationships. The
synergy between local hidden states and global context representations is central to the hierarchical
scheme.

Another relevant theoretical aspect relates to the uncertainty inherent in natural language [23].
Modeling temporal expressions in clinical narratives often requires capturing imprecise or partial
references to time [24]. To address this uncertainty, probabilistic reasoning can be introduced, wherein
each relation 𝑅(𝑒1, 𝑒2) is associated with a distribution over possible temporal categories. Let 𝐶 =

{Before,After,Overlap, Simultaneous, . . . }. One might write: [25]

𝑃(𝑅(𝑒1, 𝑒2) = 𝑐) =
exp(v⊤𝑐 z(𝑒1 ,𝑒2 ) )∑

𝑐′∈𝐶 exp(v⊤
𝑐′z(𝑒1 ,𝑒2 ) )

where z(𝑒1 ,𝑒2 ) is a composite representation of the pair of events, derived from the hierarchical model
outputs, and v𝑐 is a parameter vector for category 𝑐. The fundamental logic-based concept of events and
intervals persists, but classification decisions become a matter of maximizing likelihood or minimizing
cross-entropy over the distribution of possible temporal categories [26].

A final theoretical principle centers on the structure of the clinical text itself, which can be dissected
into smaller logical forms. One might consider a set of textual spans 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑘}, each aligned
with an event. A simplified logic statement can express how the textual alignment maps to real-world
time intervals: [27]

∀𝑡𝑖 , 𝑡 𝑗 ∈ 𝑇,
(
mentions(𝑡𝑖 , 𝑒1) ∧ mentions(𝑡 𝑗 , 𝑒2)

)
→ 𝑅(𝑒1, 𝑒2)

where mentions(𝑡𝑖 , 𝑒1) is a predicate signifying that text span 𝑡𝑖 corresponds to event 𝑒1. The hierarchical
model must reconcile these formal abstractions of events with the inherently variable nature of clinical
language, bridging the gap between symbolic logic and continuous embeddings [28]. By grounding
each textual reference in a rich feature space, the model can exploit both local lexical cues and global
discourse patterns, ultimately generating an output that respects logical constraints while operating in a
high-dimensional learned feature space.

3. Data and Representation

Data collection and representation often constitute the principal bottleneck for clinical natural language
processing tasks, especially temporal relation extraction [29]. Clinical texts are governed by strict
privacy regulations, leading to data sparsity or partial redaction in many publicly accessible corpora
[30]. One widely used data source comprises de-identified electronic health records, in which personal
identifiers are removed to preserve privacy. Yet these de-identified records still pose challenges, due
to domain-specific abbreviations, typographical errors, truncated or incomplete medical histories, and
varied writing styles across practitioners [31].

In order to create a robust system, it is beneficial to delineate each text into its fundamental segments:
tokens, sentences, and documents [32]. Let the set of tokens across the corpus be denoted by 𝑇 =

{𝑡1, 𝑡2, . . . , 𝑡𝑁 }. Each token is mapped to an embedding w𝑖 ∈ R𝑑 . The dimension 𝑑 may be set to 200
or 300 in conventional biomedical embeddings derived from corpora like PubMed abstracts. These
embeddings might be pretrained via methods that optimize objective functions based on contextual
prediction or factorization of co-occurrence matrices [33]. Once tokens are embedded, one can define
an index function 𝜙 : 𝑇 → {1, . . . , 𝑑} that returns the embedded index of a token within the vocabulary.
The context of each token is captured through sliding windows or recurrent layers, thereby merging
local morphological and semantic evidence. [34]

Time expressions are handled separately using specialized modules that detect standardized refer-
ences such as dates or specific time markers like “two days ago,” “last week,” or “within 24 hours.” Let
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑀 } represent the set of all recognized temporal expressions in the corpus. Each 𝑥𝑖 is
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assigned an interval-based representation [𝛼𝑖 , 𝛽𝑖], which may be partial or uncertain. For instance, a
mention of “mid-July” might map to a partially bounded interval [35]. The textual alignment between
𝑥𝑖 and event references is crucial for downstream classification [36].

In addition to raw textual embeddings, it can be valuable to introduce domain-oriented symbolic
representations. Medical events often reference concepts listed in terminologies such as SNOMED CT
or ICD codes [37]. One can define a mapping 𝜓(𝑒) → C, where C is a set of concept identifiers. Each
concept identifier might then be associated with a concept embedding or a set of features describing
hierarchical relationships [38]. These hierarchies encode broader knowledge about diseases, symptoms,
and treatments, potentially clarifying ambiguous references. For instance, if the text mentions “meto-
prolol,” the system recognizes it as a beta-blocker medication used for hypertension and arrhythmia,
thus adding context about the typical temporal usage patterns of such a drug [39].

Representing the structure of the text at the sentence and document levels is also essential [40]. Let
𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑃} denote the set of sentences in a given document, with each sentence containing
a sequence of tokens. These sentences can be encoded via a recurrent function, generating a hidden
representation s𝑖 for the 𝑖-th sentence, which might be the final state of a gated recurrent unit or LSTM.
The document-level representation d could then be an aggregation of s𝑖 vectors, for instance using an
attention mechanism that weights sentences differently based on their relevance to temporal events.

The hierarchical representation extends beyond single documents in cases where one must analyze
multiple linked records for a single patient. One can add a meta-document layer of representation,
aggregating global embeddings d1, d2, . . . , d𝑄 across multiple visits. This could facilitate a more
robust capture of the evolution of patient states over time [41]. The complexity arises in ensuring
that the resultant architecture is not unwieldy [42]. Careful dimensionality reductions, parameter-
sharing schemes, and regularization strategies help manage computational overhead while preserving
performance gains from the multi-level contextual encodings.

Finally, data encoding for supervised learning requires annotation of temporal relations [43]. This
typically involves manual labeling of pairwise relationships among events or automatically generated
silver-standard annotations [44]. Each pair (𝑒1, 𝑒2) is associated with a label fromC, designating whether
𝑒1 is before 𝑒2, concurrent with it, after it, or stands in another specialized relation (e.g., overlaps partly).
The hierarchical model receives these annotated examples during training and uses them to optimize
parameters in a manner consistent with the cross-entropy objective or other loss functions. Minimizing
the distance between predicted probabilities and ground-truth annotations underpins the model’s ability
to handle complex textual references to time [45].

4. Proposed Approach

The proposed approach constitutes a hierarchical neural framework that integrates multi-scale textual
representations with an advanced inference mechanism [46]. The system commences at the token level,
constructing embeddings that encapsulate morphological, semantic, and domain-specific information.
A recurrent layer processes these embeddings, capturing sequential dependencies [47]. A subsequent
sentence-level processor aggregates the hidden states of tokens within each sentence, thus forming
a condensed representation of local context [48]. A further document-level aggregator composes an
overarching vector representation that reflects the global theme of the clinical text. The final classification
layer receives information from both local event-event interactions and the global document context,
allowing the model to infer temporal relationships holistically. [49]

Mathematically, let x𝑡 ∈ R𝑑 be the embedding of token 𝑡. A sentence with 𝑛 tokens is represented as
{x1, x2, . . . , x𝑛}. The first recurrent layer transforms these embeddings into hidden vectors h𝑖 . Denoting
this transformation as h𝑖 = 𝑔(h𝑖−1, x𝑖), we obtain a sequence of hidden states {h1, h2, . . . , h𝑛}. Let
us define the final state or a pooled representation of the hidden states in one sentence as s. The
sentence-level representation s might be further transformed by another function 𝑢(·) so that the set
of sentences in a document becomes {s1, s2, . . . , s𝑚}. These sentence embeddings are then processed
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by a document-level encoder, resulting in a document representation d. Another function 𝑣(·) might
incorporate attention scores 𝛼𝑖 that weight the relevance of each sentence. [50]

Event extraction or identification occurs in parallel. Once events within a document are recognized and
aligned with text spans, the hidden states corresponding to those spans are extracted and concatenated to
form event embeddings [51]. Let e𝑖 = concat(h𝑠𝑡𝑎𝑟𝑡 (𝑖) , h𝑒𝑛𝑑 (𝑖) ) for an event that spans tokens from index
start(i) to end(i). Additional features, such as concept embeddings or normalized time expressions, can
be appended to yield e𝑖 ∈ R𝑑′ . For each pair of events (𝑒𝑖 , 𝑒 𝑗 ), one constructs a pair representation [52]

z(𝑖, 𝑗 ) = concat(e𝑖 , e 𝑗 , d)

incorporating both local event embeddings and the global context vector d. The next step is a
classification function

𝑝 (𝑖, 𝑗 ) = 𝜎(W𝑝 z(𝑖, 𝑗 ) + b𝑝)

where 𝜎(·) can be a softmax function if multiple categories are being predicted for the event-event
relationship [53].

Consider also that temporal reasoning might benefit from a specialized attention mechanism that
selectively focuses on the textual regions surrounding the mention of events [54]. Let us define a
similarity score 𝑢(h𝑘 , e𝑖) that measures how relevant a particular hidden state h𝑘 is to an event embedding
e𝑖 . One can then compute attention weights 𝛼𝑘,𝑖 for each token in the vicinity of event 𝑒𝑖 . These attention
weights can be incorporated into the event embedding construction, refining e𝑖 to capture the local
context more precisely. The hierarchical design ensures that contextual information flows from token
embeddings up to the document-level representation, thereby allowing the inference module to handle
both micro-level cues and macro-level discourse structure when predicting the temporal relation.

Training is carried out using annotated pairs of events [55]. Let 𝑦 (𝑖, 𝑗 ) be the ground-truth label for
the relation between events 𝑒𝑖 and 𝑒 𝑗 . A standard cross-entropy objective can be expressed as [56]

𝐿 = −
∑︁

(𝑖, 𝑗 ) ∈Ω

∑︁
𝑐∈𝐶

I[𝑦 (𝑖, 𝑗 ) = 𝑐] log 𝑝 (𝑖, 𝑗 ) ,𝑐

where Ω is the set of all event pairs in the training set, 𝐶 is the category set, and 𝑝 (𝑖, 𝑗 ) ,𝑐 is the predicted
probability that (𝑒𝑖 , 𝑒 𝑗 ) belongs to category 𝑐. Backpropagation through time is used to compute the
gradients 𝜕𝐿

𝜕𝜃
for all parameters 𝜃 = {W𝑝 , b𝑝 ,Wℎ𝑥 ,Wℎℎ, . . . }. Optimization proceeds via algorithms

such as Adam or RMSProp, iterating until convergence criteria are met or validation performance ceases
to improve.

An additional mechanism that can be introduced is consistency regularization, which enforces certain
logical constraints on the output predictions [57]. For instance, if 𝑒1 is predicted to be before 𝑒2, and 𝑒2
is before 𝑒3, it is logically consistent to enforce that 𝑒1 is before 𝑒3 [58]. One could add a penalty term
in the loss function for any violation of this transitive property. Symbolically, [59]

𝐿logic = 𝜆
∑︁

(𝑖, 𝑗 ,𝑘 ) ∈Ω3

max
(
0, 𝜂 + 𝑝 (𝑖, 𝑗 ) ,Before + 𝑝 ( 𝑗 ,𝑘 ) ,Before − 𝑝 (𝑖,𝑘 ) ,Before

)
where 𝜆 and 𝜂 are hyperparameters controlling the strength and margin for penalizing transitivity
violations [60]. Although more complex to implement, this kind of regularization can substantially
improve consistency, particularly in domains like clinical narratives where certain temporal sequences
are common and must logically conform to real-world constraints.

Overall, this hierarchical approach comprehensively merges local textual embeddings, global contex-
tual vectors, event-pair representations, and logical constraints into an integrated framework for temporal
relation extraction [61]. By leveraging deep contextual encoders alongside domain-specific features and
formal constraints, it aims to maximize robustness and interpretability, two crucial attributes in a clinical
setting. [62]
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5. Experimental Evaluation

Experimental evaluation provides a quantitative and qualitative assessment of the proposed hierarchical
neural framework. To demonstrate effectiveness, we consider benchmark datasets annotated for temporal
relations in clinical narratives [63]. These datasets may include richly labeled sections of de-identified
electronic health records, discharge summaries, and radiology reports, annotated with event boundaries,
temporal expressions, and the temporal relations linking them [64].

Let us define the dataset 𝐷 as containing documents {𝑑1, 𝑑2, . . . , 𝑑𝑀 }. Each document is segmented
into sentences and tokens, with events labeled and aligned to text spans. Time expressions are also
annotated, providing the ground truth for evaluations [65]. The total number of annotated event pairs
might be in the range of thousands or tens of thousands, depending on the corpus size [66]. The entire
dataset is typically split into training, validation, and test sets, using conventional splits such as 70-10-20.

For performance metrics, precision, recall, and F1-score are standard [67]. If the label set 𝐶 is
multi-class, metrics can be averaged macro-wise or micro-wise depending on the experimental design
[68]. One can also adopt a temporal-aware scoring scheme that penalizes wrong predictions of strict
relations like Before vs After more severely than misclassifications involving Overlap vs Contains. In
other words, a partial match might be tolerated if an event is predicted to be overlapping when it is truly
contained, but not if it is reversed entirely [69]. Such considerations are important in clinical contexts
where certain misclassifications have graver implications [70].

Let us denote by 𝑇𝑃𝑐, 𝐹𝑃𝑐, and 𝐹𝑁𝑐 the true positives, false positives, and false negatives for
category 𝑐. We compute: [71]

Precision𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑃𝑐

, Recall𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑁𝑐

, F1𝑐 = 2 · Precision𝑐 · Recall𝑐
Precision𝑐 + Recall𝑐

A weighted average over categories is then calculated, with weights typically proportional to the category
frequency in the data [72]. Alternatively, a macro-average approach that treats each category equally
might be used. These metrics are computed over the test set, comparing the predicted labels �̂� (𝑖, 𝑗 ) with
the ground truth 𝑦 (𝑖, 𝑗 ) . To assess the effect of hierarchical modeling, we compare results from various
ablation settings, such as a single-layer model that only uses token-level embeddings, a two-layer model
that includes sentence-level aggregation, and the full model with both sentence and document-level
encoders. [73]

In addition to these quantitative measures, we inspect typical errors made by the system [74]. A
common error type arises from ambiguous references in the text, such as elliptical language around event
occurrence or partial references to time intervals. Another source of error might stem from domain-
specific abbreviations, e.g., “d/c” or “DC” for “discontinue,” which might be misinterpreted as the
District of Columbia or simply disregarded by the model [75]. By analyzing these errors qualitatively, we
can propose targeted solutions, such as domain-specific expansions or lexical normalization strategies,
to refine system performance. [76]

Moreover, we evaluate computational efficiency by tracking training times, memory usage, and
convergence behavior. In large clinical corpora, the total number of event pairs can be substantial, so the
model must scale accordingly [77]. The hierarchical architecture naturally increases parameter count
relative to simpler models, but parameter-sharing strategies and dimensionality reductions can mitigate
overhead [78]. Empirical results show that while training might be slower than for simpler baselines,
the net improvement in temporal relation accuracy generally justifies the added complexity. We also
measure the stability of training by monitoring the validation loss over multiple training epochs [79].

One significant aspect of real-world deployment is the interpretability of predictions [80]. To this
end, we compute attention visualizations that highlight which tokens or sentences the model finds most
relevant when inferring a temporal relation. Although we do not create itemized lists or incorporate
substructures in the text, we can note that the hierarchical architecture makes these visualizations clearer
than in single-layer black-box models [81]. By correlating high attention weights with specific phrases
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like “prior to,” “following,” or “afterwards,” we confirm that the system attends appropriately to time-
indicative cues [82]. This, in turn, enhances clinicians’ trust, as it offers partial transparency into how
the system processes textual inputs.

Finally, we run post-hoc consistency checks by evaluating logical constraints in the model outputs
[83]. For instance, if we identify that the system predicts a cyclical relationship, such as event 𝐴 before
𝐵, 𝐵 before𝐶, and𝐶 before 𝐴, we flag an inconsistency [84]. Ideally, the number of such inconsistencies
should be minimal, indicating that the model has internalized basic temporal ordering. In practice, one
might observe some inconsistencies, especially in ambiguous texts [85]. These can often be addressed
by adding a logical consistency penalty to the training objective or by employing a post-processing
step that attempts to correct cyclical dependencies [86]. The overall evaluation thus combines strict
performance metrics with error analysis, interpretability, and logical coherence checks, ensuring that
the system can be safely and effectively integrated into clinical pipelines.

6. Conclusion

This paper has examined hierarchical neural models for temporal relation extraction in clinical narratives,
elucidating how multi-level encoders, global context representations, and logical constraints can be
harnessed to enhance performance in this challenging domain [87]. The formal underpinnings draw
on temporal logic to structure the space of event relations, while deep learning constructs distributed
representations that capture subtle linguistic cues and domain-specific terminologies [88]. We discussed
techniques for data collection and representation, highlighting the complexities of clinical text as well
as the potential offered by embeddings enriched with biomedical knowledge. The proposed model
integrates token-level embeddings, sentence-level recurrent layers, document-level aggregators, and
specialized modules that attend to event context, thereby capturing both local and global structure in a
coherent framework. [89]

Our approach extends beyond mere architectural novelty by exploring training objectives, inference
mechanisms, and regularization strategies that promote logical consistency in the predicted relations
[90]. Experimental evaluation on benchmark datasets indicates that hierarchical modeling confers
improvements in precision, recall, and F1-score relative to simpler baselines, while interpretability is
bolstered through more transparent attention signals. We additionally explored issues surrounding data
sparseness, error analysis, and computational costs, emphasizing that although hierarchical architectures
increase complexity, they yield tangible benefits for temporal reasoning in real-world clinical applica-
tions [91]. These findings suggest that hierarchical neural methods will likely play an increasingly
prominent role in the automation of temporal analysis for electronic health records [92, 93].

Future directions involve tightening the integration between symbolic and subsymbolic representa-
tions, possibly through knowledge distillation or advanced pretraining techniques that embed temporal
logic within the neural architecture. Another promising avenue is the expansion of the notion of hierarchy
to include cross-document contexts, allowing the model to analyze multiple patient notes collectively
[94]. This would reinforce coherence in timelines that span multiple care episodes [95]. Additionally,
the exploration of interpretability at a finer grain, paired with domain constraints and user-friendly inter-
faces, may boost clinical adoption. As methodologies evolve, these hierarchical neural systems could
find widespread use in decision support, predictive analytics, and personalized medicine, revolutionizing
how temporal information is extracted and leveraged in patient care. [96]
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