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Abstract

Text-guided image editing has become central to interactive visual content creation, as natural language offers a flexible
interface for specifying semantic modifications. High-resolution editing, however, remains challenging because
edits must remain spatially coherent, respect object boundaries, and preserve global structure while responding to
localized textual instructions. Existing approaches often rely on a single mask or uniform conditioning over the
image, which can lead to spatial bleeding of edits, loss of fine-scale detail, or inconsistent behavior across resolutions.
This work introduces a hierarchical mask composition framework for text-guided image editing that decomposes the
image plane into a tree of overlapping and nested regions, each associated with distinct textual attributes, editing
strengths, or diffusion schedules. The framework constructs a hierarchy of masks ranging from coarse semantic
partitions down to fine-grained structures, and composes them in a consistent way to control how local edits propagate
across scales. By coupling this hierarchical representation with text-conditioned generative models, the approach
enables localized edits at high resolution while maintaining compatibility with latent-space diffusion backbones.
The study analyzes the algebraic properties of the composition operator, the numerical behavior of gradient-based
optimization of soft masks, and the interaction between hierarchical masking and multi-scale feature representations.
Empirical observations on diverse editing tasks indicate that hierarchical mask composition can provide finer spatial
control, improved boundary fidelity, and more predictable edit locality compared to single-layer masking strategies,
particularly when images are edited at substantially higher resolutions than those used during model pretraining.

1. Introduction

Text-guided image editing connects natural language with visual content, allowing users to specify
semantic transformations such as changing object appearance, inserting or removing elements, or
modifying global style. Modern generative models, particularly latent diffusion architectures, offer
mechanisms to condition the generative trajectory on text embeddings, making it possible to steer image
synthesis and editing with relatively high fidelity to a textual prompt. Despite the rapid progress in
generative modeling, precise spatial control remains an issue, especially when editing high-resolution
images that feature fine structures, complex occlusions, and multiple interacting objects. A typical
workflow relies on a mask that indicates the region of interest, which is then combined with the original
image and the edited output to produce a final result. While conceptually simple, a single-layer mask
is often insufficient to capture the hierarchical organization of visual scenes and the corresponding
hierarchy of textual instructions.

High-resolution editing accentuates the limitations of flat masking [1]. At larger resolutions, the
semantic content of an image tends to exhibit nested structures, where objects contain parts, parts contain
subparts, and textures exhibit multi-scale statistics. Text prompts often reflect this hierarchy implicitly, for
example by describing an object and then specifying properties of its parts, or by imposing global stylistic
constraints that should apply everywhere except in certain protected regions. A flat mask is forced to
approximate this structure with a single binary or soft map, which cannot simultaneously encode priority
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rules, partial overlaps, or scale-dependent influence of different text conditions. As a result, edits may
leak outside intended regions, global consistency may be disrupted by local modifications, and nuanced
instructions may be lost.

Hierarchical mask composition addresses these issues by explicitly modeling the image domain as
a hierarchy of regions arranged in a tree or more general directed acyclic structure. Each node in the
hierarchy corresponds to a mask defined over the spatial domain of the image and is associated with a
textual condition, an editing schedule, or a strength parameter that quantifies how strongly the generative
model should respond to that node. Parent nodes represent coarse regions or global constraints, while
child nodes represent more localized modifications, refinements, or exceptions. The core question is how
to compose these masks into a final effective conditioning signal that modulates the generative process at
different spatial locations and scales without introducing inconsistencies.
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Figure 1: High-level overview of hierarchical mask composition for text-guided image editing. The source image
and textual instructions are encoded into a latent representation, which is modulated by a hierarchy of spatial masks.
The hierarchy induces an effective, spatially varying text-conditioning field that steers a diffusion-based editor to
produce the final edited image while maintaining control over where and how edits are applied.
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Figure 2: Hierarchical organization of masks. The left panel shows a rooted tree over nodes, while the right panel
illustrates overlapping mask fields on the image domain derived from the same hierarchy. Coarse nodes define large
regions with broad semantic influence, and deeper nodes refine these regions with more localized masks, enabling
structured control over where textual attributes are applied.
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Aspect Description Role in framework

Spatial control ~ Text-guided edits localized Prevent leakage of edits outside
in space target regions

High resolution  Edits on large H Xx W Preserve fine structures and
images global layout

Hierarchy Tree of overlapping regions Encode object/part/scene organi-

zation
Mask composi- Operator C on { mk} Resolve overlaps and precedence
tion across nodes

Latent diffusion  Text-conditioned genera- Realize edits in a multi-scale
tive backbone latent space

Table 1: Key ingredients of the hierarchical mask composition approach for text-guided image editing.

Level Example region Typical textual instruction

Root Whole image “Render the scene in watercolor
style.”

Object Person, building, tree “Make the dress red and glossy.”

Part Face, window, foliage “Add freckles to the face.”

Sub-part Eye, pane, leaf cluster “Brighten the left eye only.”

Boundary band  Narrow transition zones “Blend foreground and back-

ground smoothly.”

Table 2: Illustrative hierarchy levels and associated text instructions.

Scheme Effective mask Main effect
Multiplicative mF = mF jerk\{k} a’ Strong child override of parents
Normalized k= 2 Bounded total conditioning per
jsiml e pixel
Top-down Residual mass pushed Conserves influence from coarse
along tree to fine
Depth-weighted sk = 'yhk‘ Adjusts precedence by node
depth
Hybrid Combination per node or Tailors behavior to editing sce-
level nario

Table 3: Representative composition schemes for converting intrinsic masks into effective influences.

A hierarchical approach is particularly relevant for high-resolution editing because the underlying
generative models often operate in a multi-scale manner. Convolutional and attention-based backbones
progressively transform features across resolutions, and diffusion schedulers generate structures from
coarse noise to fine detail. Introducing a mask hierarchy enables alignment between semantic structure
and architectural scale: coarse masks can influence early diffusion steps or low-resolution layers, while
fine masks shape later steps or high-resolution layers. The composition operator thus needs to account
not only for spatial overlaps but also for the temporal and depth dimensions of the generative process.

This work develops a formal model of hierarchical mask composition, in which masks are treated as
spatial fields and their interactions are governed by algebraic rules that encode precedence, blending,
and conflict resolution [2]. Soft masks provide differentiability, making it possible to optimize mask
parameters jointly with generative model parameters or with latent codes under reconstruction and
text alignment losses. The analysis examines the properties of such operators, including symmetry,
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Property Normalized operator Implication
Nonnegativity M, > 0 for My >0 Masks remain valid influence
fields
Bounded sum e SeMip <1 Interpretable as convex weight-
ing
Coupled  gradi- dM;OM;;, depends on all Overlaps couple updates across
ents k nodes
Stability Denominator d; prevents Avoids unstable scaling at dense
blow-up pixels
Depth control Choice of s and hierarchy Trades global consistency vs
depth locality

Table 4: Analytical properties of the normalized hierarchical composition operator.

Loss Definition sketch Encouraged behav- Evaluation region
ior
Lixt, Image-text similarity Strong alignment with Where mk is large
per node prompts
liq Distance to original Content preservation Complement of active
image masks
Rrv Total variation on m* Spatial smoothness of Full image grid
masks

Area penalty  Sum of mask values  Compact, sparse sup- High-variance regions
ports

Hierarchy Child £ parent viola- Structural consistency Along  parent-child

penalty tions pairs

Table 5: Typical loss components used when optimizing hierarchical masks and latent variables.

Level Resolution Dominant nodes Editing effect

Low Coarse feature maps  Root, shallow parents Global style and layout

Mid Intermediate maps Object-level nodes Shape and material of

objects

High Near image scale Part and boundary Fine details and edges
nodes

Refinement  Optional upsampling Narrow transition Seamless blending of
nodes regions

Table 6: Coupling between hierarchy depth and multi-scale feature maps in a diffusion backbone.

associativity under certain conditions, and stability under perturbations. This formulation allows the
study of numerical issues that arise when many masks overlap, such as gradient attenuation or saturation,
and suggests parameterizations that alleviate these issues.

The following sections present background on text-guided image editing and masking strategies,
describe the hierarchical mask composition framework and its integration with text-conditioned generative
models, analyze the mathematical structure of the compositional operators, and discuss optimization
procedures for learning or refining the hierarchy in a data-driven or user-in-the-loop setting. Experimental
observations are then described, focusing on qualitative and quantitative aspects of edit locality, boundary
sharpness, and consistency across resolutions. The paper concludes with a discussion of limitations and
potential directions for extending hierarchical mask composition to more complex scene representations.
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Scenario Target behavior Hierarchical strategy Failure mode

Local color Restrict edit to one gar- Strong child mask on Color bleeding at weak
change ment garment boundaries

Object inser- Add object in fixed Leafnode with custom Misalignment  with
tion region prompt shadows

Style plus edit Global style + local Root style, child excep- Style dominates local

override

tion nodes

change

Noisy segmen- Correct rough masks  Child refinements with Residual artifacts in
tation TV regularization cluttered areas
Upscaled edit- Consistent behavior Shared hierarchy Tile discontinuities if
ing across scales across resolutions ignored

Table 7: Editing scenarios and typical behaviors observed with hierarchical mask composition.

Possible extension
Learnable hierarchy

Limitation
Higher

Aspect Advantage

Spatial preci- Improved locality of implementa-

sion edits tion complexity from data

Boundaries Better transition han- Requires careful mask Dedicated boundary
dling design nodes

Optimization Joint tuning of masks Gradient attenuation Adaptive strengths and
and latents with overlap pruning

Scalability Coarse-to-fine control Overhead in deep trees Sparse and tile-aware

masks
Generalization Shared rules across
images

Depends on backbone
capacity

Integration with 3D or
multi-view models

Table 8: Summary of benefits, limitations, and extensions suggested by the hierarchical mask formulation.

2. Background on Text-Guided Image Editing and Masking

Text-guided image editing can be framed as the problem of transforming a source image into a target
image that reflects a new textual description while preserving certain aspects of the original content. In
many pipelines, the source image is encoded into a latent representation, which is then evolved under
the influence of a text-conditioned generative process. Masks often enter this pipeline in at least two
ways. First, a mask can specify which regions are allowed to change, while other regions are constrained
to remain close to the original image. Second, a mask can be used to spatially modulate conditioning
signals, such as cross-attention maps or feature injections that depend on the text. While classical photo
editing applications used hand-crafted alpha masks for blending, recent generative approaches treat
masks as first-class conditioning signals that interact with the learned model.
Let an image be represented as a tensor [3]

HxWxC
I e REXWXC,

where H and W denote spatial dimensions and C'is the number of channels. A standard mask is a map
m e 0,17V,

where m;; indicates the degree to which the pixel at spatial location , j should be subject to editing. In
the simplest form, m is binary, so the edited image I is formed by

oo e
Lije = mij 1}

(0]
je I;

1- Mij Lije,



6 CLASSICALLIBRARY

s =
= =
Per-node masks M
‘—I
a
Composition CM, s
S =
Effective masks M 7—'9

‘ Spatial text field ecgx ‘

Figure 3: Schematic of the mask composition operator. Per-node masks and scalar strengths are combined by a
differentiable operator that enforces bounded total influence at each pixel, yielding effective masks M. These effective
masks are then used to form a spatially varying text-conditioning field ecgx, which weights textual embeddings
according to the hierarchical structure and local mask activations.
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Figure 4: Alignment between hierarchical masks and multi-scale feature representations. Different levels of the
mask hierarchy are associated with different resolutions, and each level modulates the corresponding feature maps
within a diffusion or U-Net backbone. Coarse masks primarily influence low-resolution features, while finer masks
refine high-resolution layers, enabling edits that are coherent across scales yet localized in space.

where 7€ is an edited candidate and 7° is the original image. This formulation decouples the synthesis
phase from the blending phase and assumes that the generative model can synthesize plausible content in
masked regions while leaving the unmasked regions untouched. However, for text-guided editing, the
generative model itself can be conditioned on the mask, such that synthesized content responds more
strongly inside the mask than outside.

Modern diffusion-based editors commonly encode the image into a latent space

= thwxd’

where h < H, w < W, and d is a feature dimension. The mask is downsampled or otherwise mapped to
a latent-space mask

m* € 0,1xw,
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Figure 5: Optimization loop for hierarchical masks. Given an initial hierarchy, a diffusion-based editor produces an
edited image whose agreement with text prompts, preservation of protected content, and mask regularity are jointly
quantified by a loss. Gradients are backpropagated through the diffusion process and the composition operator to
update mask parameters, allowing the hierarchy to adapt its shapes and opacities to better realize the desired edits.

The diffusion model then evolves z under a stochastic differential or difference equation, with drift and
noise terms modulated by the textual embedding and possibly by m?*. Because the latent resolution is
lower than the image resolution, spatial precision is inherently limited. At the same time, the model
usually employs multi-resolution feature maps internally, so information propagates across scales. This
creates a mismatch between the single-resolution mask and the multi-scale architecture.

Mask design and manipulation are long-standing topics in image processing and graphics. Classical
alpha blending uses a single alpha value per pixel, with simple compositing rules that are associative
when colors are interpreted appropriately. Segmentation approaches partition the image into regions that
often form hierarchies, where each region may have parent regions representing larger structures [4]. In
generative modeling, masks have been used not only for blending but also as latent codes that indicate
object presence or absence, or that align with semantic segmentation labels. However, the integration of
such hierarchical segmentations into text-guided diffusion editing remains underexplored.

From the perspective of mathematical modeling, a mask is a scalar field over a discrete domain, while
the hierarchy of masks can be viewed as a family of scalar fields indexed by a partially ordered set. The
composition of masks corresponds to combining these fields according to rules that may depend on their
relative positions in the hierarchy, on local values of the fields, and on auxiliary parameters that encode
user preferences such as priority or occlusion ordering. The challenge is to define composition operators
that are expressive yet sufficiently simple to permit efficient computation and stable optimization.

Existing editing pipelines typically employ flat masks without explicit hierarchy. When multiple
masks are used, they are often combined using simple arithmetic operations, for example by taking a
minimum, maximum, or weighted sum. These operations do not encode hierarchical precedence beyond
simple dominance and do not account for multi-scale architecture. As a result, sudden changes can occur
when masks overlap, and the resulting effective conditioning may be difficult to interpret or predict. For
high-resolution tasks, these limitations are amplified, since small inconsistencies or artifacts may become
more visible.

In contrast, hierarchical structures have proven useful in other areas of vision and graphics, such as
image pyramids, wavelet decompositions, and scene graphs. These structures allow algorithms to process
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Figure 6: Example of balancing global and local text instructions. A root node carries a global prompt that sets the
overall style, while child nodes attach local prompts to specific regions. Hierarchical mask composition allocates
conditioning such that the background follows the global instruction, and foreground regions receive stronger influence
from their corresponding local prompts, preserving global coherence without sacrificing local edit specificity.

data at different scales, to propagate coarse constraints downwards, and to aggregate fine detail upwards.
The goal of hierarchical mask composition for text-guided editing is to bring similar principles to the
design of spatial conditioning signals [5]. Rather than treating the mask as an auxiliary artifact detached
from the generative architecture, the hierarchy is integrated into both the spatial and scale dimensions of
the model, enabling a more faithful translation of multi-level textual instructions into localized visual
modifications.

3. Hierarchical Mask Composition Framework

The hierarchical mask composition framework models the image domain as a collection of regions
organized in a rooted tree or more general directed acyclic graph. Each node % in this hierarchy is
associated with a mask
mk e 0,11V
a textual embedding e*, and potentially additional parameters such as editing strength or schedule
modifiers. The root node typically corresponds to the entire image or to a global condition, such as a style
description that should influence all pixels. Child nodes correspond to subregions that refine the behavior
within the parent region, for example specifying edits to objects or parts of objects. The construction of the
final effective mask at each pixel position involves combining the contributions of all nodes whose masks
assign nonzero values at that position, respecting the hierarchy and parameters that encode precedence.
Formally, consider a finite index set

K=1{1,... K}

of nodes, with a partial order =< that captures the hierarchy. For simplicity, one can assume a rooted
tree with root r, although the formulation extends to forests or more general acyclic graphs. Each node
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k has a parent park except for the root, and a set of children chk. The mask m” is interpreted as the
intrinsic influence of node k at each pixel, before considering interactions with other nodes. To model
precedence, an attenuation factor can be applied to the parent mask in regions where children are active,
and conflicting instructions between siblings can be resolved by normalized weighting.

To construct the effective per-node influence at a pixel location x, consider the path from the root to
node k. Denote by 7k the set of nodes on this path. For a purely multiplicative attenuation model, the
effective mask of node k at x can be written as [6]

mFe =mFz a’ ,
gemk\{k}

where a x is an attenuation factor derived from the children of node j. For example, if the children of j
are encouraged to override their parent, then the parent attenuation at location x might be

adr=1- mtzw?,
fechyj

where w’ are weights satisfying suitable bounds to ensure nonnegativity. This formulation encodes the
idea that where a child is active, its parent influence is reduced. However, pure multiplicative models can
suffer from over-attenuation when many levels of the hierarchy overlap.

An alternative is to normalize influences at each pixel so that the total conditioned strength remains
bounded. Define unnormalized contributions

where s* is a scalar strength parameter for node k. One can then define normalized effective contributions
by
k Ck.’,U
atr = ———
jexdx €

where € > 0 is small. The normalized weights oz sum to at most one, depending on the additive
structure and e. To incorporate hierarchy, the scalar strengths s* can be derived from the depth of the node,
from user-specified priorities, or from learned parameters. For example, deeper nodes might be given
higher strength to encourage more localized edits, or the opposite if global consistency is prioritized.

A more expressive scheme combines hierarchical attenuation with normalization. At each pixel
location, a top-down pass can be performed through the hierarchy, where parent influence is partially
allocated to children based on their masks and strengths, and residual influence remains attached to the
parent. This can be written as a recursion. For each node k, define a residual influence map

rke e0,1,

initialized at the root as »"x = 1. For each child ¢ € chk, define an allocation

a7 = rkr gta,

where qéx is a normalized mask over children, for example

Y méx

qr=———".
jechkmlx €

k

The residual influence for the child is set to rfz = a*¢z. The effective mask of node k becomes [7]
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and the total influence is conserved by the recursive allocation. In this formulation, the hierarchy
determines the flow of influence from coarse to fine regions, while masks and strengths control where
and how much of that influence is realized.

Once the effective masks 7m* are computed, they must be coupled to the text-conditioned generative
model. Let the textual embedding associated with node k be

ek e R,
and denote the collection of embeddings by a matrix
E g RFxde,

During diffusion-based editing, cross-attention layers typically compute attention maps between spatial
features and text tokens. The hierarchical masks can modulate these interactions. For example, for a
spatial location x and a text token associated with node k, the attention logits can be shifted by a factor
proportional to 7*x, amplifying or suppressing the influence of that textual component. Alternatively, a
combined embedding at each spatial location can be formed as a weighted sum

Ceff T = m-xe
€ ]{:E’C b

which is then passed to the network as a local conditioning vector. This approach effectively maps the
hierarchy of masks and textual embeddings to a continuous field of textual features over the image domain.

The hierarchy can also be aligned with architectural scale. Suppose the generative model uses feature
maps at resolutions

H07 WO7H17 Wla .. '7HL7WL7 8

with Hyg = H and Wy = W. For each level ¢, a set of masks

mk‘f c 0’ 1Hg><W[

can be instantiated by downsampling or learned separately. Coarse nodes in the hierarchy may primarily
affect low-resolution levels, while fine nodes influence high-resolution levels. The composition operator
is then applied per level, possibly with level-dependent parameters. This allows edits that have global
stylistic impact to be injected early in the diffusion process at coarse scales, while localized structural
edits are applied later.

From an implementation standpoint, hierarchical mask composition must balance expressiveness
with computational overhead. Direct evaluation of recursive allocations for all pixels and nodes may be
expensive if the hierarchy is large. However, many practical hierarchies are relatively shallow, and nodes
may be confined to particular spatial regions, enabling sparse representations. Furthermore, effective
masks can be precomputed once per editing session, rather than being recomputed at every diffusion
step, unless the editing schedule requires time-dependent mask modulation.

The framework is flexible with respect to how the hierarchy is obtained. Masks can be provided by
users, derived from semantic segmentation models, or initialized from rough scribbles and then refined
via optimization. The hierarchy itself can be designed manually or inferred automatically, for example
by clustering segments or by performing a recursive partition of the image based on texture and color
cues [9]. The composition rules then enforce consistent behavior irrespective of how the hierarchy was
created, enabling a uniform interface for text-guided editing across different sources of spatial structure.
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4. Mathematical Formulation and Analysis

The hierarchical mask composition framework can be formalized using linear algebra and measure-
theoretic language on discrete domains. Consider a discrete spatial domain

Q={1,...,H} x{1,..., W},
and a finite index set C of nodes. Each mask m* can be viewed as a vector in
Rl 7
by flattening spatial indices. The collection of all masks defines a matrix
M c Rl.QI X I('7

whose k-th column is the vectorized mask mF. Similarly, effective masks 7m* form a matrix M. The
composition operator can then be regarded as a mapping

C:RIGHE @ — RICHK

where O collects scalar parameters such as strengths and hierarchy structure. The goal is to design C
such that certain desirable properties are satisfied.

One basic property is nonnegativity. For any input M with nonnegative entries, the output M should
satisfy M;;, > 0 for all pixels 4 and nodes k. Another property is boundedness of total influence at each
pixel. Let

s e RE

be a vector of strengths with nonnegative entries. Define the total influence at pixel ¢ as

It is often desirable to have [10]

Ug S 1
for all ¢, so that the combined conditioning can be interpreted as a convex combination or as a
bounded modulation factor. The normalization-based composition described earlier can be expressed in
vector-matrix form as
sk Mg

M, = —2—%
K . ..
Kisi My e

In matrix notation, defining an elementwise product operator ® and a vector
d e R

with components

K
di = S5 Mi]‘ g,
Jj=1

one can write

M = Mdiags 0 d1 ",

where © denotes elementwise division and 1 is a vector of ones of length K. This operator is differentiable
wherever d; > 0 and is straightforward to implement.
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To encode hierarchy, the strengths s3 can be made dependent on depth or on parent-child relationships.
Let hj be the depth of node k, with h,. = 0 at the root. A simple exponential depth weighting

h
S =7 k?

with v € 0,1, reduces the effect of deeper nodes when v < 1 or emphasizes them when v > 1.
Alternatively, one can introduce a stochastic interpretation by viewing the normalized influences as
probabilities [ 1 1]. For each pixel 7, the vector

Pi = Q41, ..., GK
with

o = My,

can be regarded as a discrete distribution over nodes. This suggests probabilistic formulations in which
the node at each pixel is sampled according to p; and the corresponding text embedding is applied. In
practice, deterministic weighted averages are generally used, but the stochastic perspective provides
insight into regularization strategies.

The hierarchical allocation scheme can be analyzed using tensor calculus. Let

R €0,119xK

denote residual influences, with R;, initialized to one for all pixels and other entries to zero. For each
parent-child pair k, ¢, the allocation from £ to ¢ at pixel  is

A e = Rix Qi ke,

where
M
jechk Mij €

Qi ke =

if £ is a child of k and zero otherwise. The residual influence matrix is updated as
Rip = kAi,k€7

propagating influence downwards. This recursive definition can be unfolded into a series of matrix
operations, but the resulting expressions depend on the specific topology of the hierarchy.
An important mathematical question is how gradients propagate through the composition operator
when masks are optimized jointly with generative parameters. Consider a loss function
LM,
that depends on effective masks and model parameters 6 [12]. The gradient with respect to M is

oL 0L OMy
OM;y, T 8Mz£ OM;. ’

For the normalized composition, the derivative can be written as

M, _ s Sk SeseMi
oMy, az

where 0y is the Kronecker delta. This expression shows that gradients couple all nodes at each pixel,
because a change in any mask entry modifies the denominator d;. When many masks overlap, the
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denominators may become large, shrinking gradients and potentially slowing optimization. This suggests
that alternative parameterizations of M, such as using logits passed through a sigmoid, or using sparse
masks, can help maintain gradient magnitudes within a useful range.

The hierarchical allocation scheme introduces additional complexity in gradients due to the recursive
dependency of residual influences on masks. The chain rule generates products of attenuation and
allocation factors along paths in the hierarchy. In deep hierarchies, this can lead to gradient attenuation
similar to vanishing gradients in deep networks. To mitigate this, one can constrain the depth of the
hierarchy, introduce residual connections that bypass some levels, or design allocation functions that
do not strictly multiply residuals along the entire path. For example, using additive rather than purely
multiplicative attenuation for certain levels can preserve gradient magnitudes.

From a discrete mathematics perspective, the hierarchical mask composition can be viewed as
operating on a labeled tree over the pixel set. For each pixel, the set of nodes with nonzero mask values
defines a finite subset of the tree. Composition resolves this subset into a distribution over nodes according
to precedence rules [13]. If one restricts the class of masks to indicator functions of regions that form a
partition of the image at each level, then the composition reduces to a consistent assignment of pixels to
leaves, possibly with mixtures at boundaries. When masks overlap arbitrarily, the composition acts as a
soft resolution of conflicts, which may be interpreted as solving a local discrete optimization problem at
each pixel.

The continuous limit, in which the image domain is treated as a compact subset of R? and masks as
measurable functions, offers another perspective. In this setting, composition yields measurable functions
that preserve integrability and boundedness. One can define energy functionals that penalize irregularities
in masks, such as total variation or Sobolev norms, and study the variational properties of the composition
operator. For instance, if masks are optimized to minimize a loss functional plus a regularization term
enforcing spatial smoothness, one can analyze existence and stability of minimizers using tools from
calculus of variations. While practical algorithms operate on discrete grids, such continuous analyses
can guide the design of numerically stable discretizations.

Finally, the interaction between hierarchical masks and the latent diffusion dynamics can be formulated
mathematically. Let

2t
denote the latent variable at time ¢ in the diffusion process, evolving according to an update rule

211 = 2t fa,eeff,t Oy,

where 7, is random noise and e is the effective textual conditioning field derived from the hierarchy.
The function f may depend on spatial position, so one can write

th,@eﬁ‘,tl’ =gz, €eﬁ‘.'1/'7t,

where g is applied pointwise or via convolutional neighborhoods. The influence of hierarchical masks
enters through e.gx, which is a linear combination of embeddings weighted by effective masks. The
resulting diffusion dynamics are linear in the masks at the level of conditioning, but nonlinear in terms of
the generated images. Analyzing the sensitivity of the final output to variations in masks thus involves
understanding how perturbations in conditioning propagate through the diffusion trajectory, a problem
that can be explored using linear response approximations or by differentiating through the unrolled
diffusion steps [14].

5. Optimization and Numerical Methods

Practical use of hierarchical mask composition in text-guided image editing requires numerically stable
and efficient optimization procedures. Masks may be provided by users as rough sketches or bounding
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boxes, by automatic segmentation models, or by simple geometric shapes. In many scenarios, these initial
masks serve as starting points for an optimization that refines their shapes and opacities to better match
textual goals and visual plausibility. The optimization is performed jointly with the editing process, in
which latent variables and, potentially, some model parameters are adjusted to fit the desired edit.

Let 6 denote the parameters of the generative editor, which may include weights of the diffusion
model, adapter layers, or text-image alignment modules. Let zg be the latent encoding of the original
image, and let {z; } be the sequence produced by the diffusion process under hierarchical conditioning.
The final decoded image is

I= DZT,
where D is the decoder. The objective is to minimize a loss
L= Next bixt ], B Nia bial, T Aveg RM,

where F encodes textual instructions at different nodes, £, measures text-image alignment, ¢;q measures
fidelity to the original image in protected regions, and R M regularizes masks. The scalars Atxt, Aid; Areg
control the trade-offs among these terms.

The text alignment loss £y can be defined as a function of similarity between image embeddings and
text embeddings. For instance, let

oI

be an image encoder and e* be a text encoder applied to node embeddings. A simple form is

Etxtf, E=- kwk S(bkf, wek,

where s is a similarity measure and gi)kf extracts features from spatial regions where node £ has significant
effective mask. The weights wy, allow varying emphasis across nodes [15]. The identity-preserving loss
4;q4 can combine pixel-wise differences, feature distances, and structural similarity measures evaluated
on regions where editing is not desired.

Regularization of masks is critical to prevent degenerate solutions, such as masks collapsing to zero
or saturating to one everywhere. Spatial smoothness can be enforced via a discrete total variation term

— k k2 k k2
RrvM = ki \/miLj MG My g T T
This term encourages masks to change gradually across pixels. Additional penalties can enforce sparsity
or compact support, for example by adding a term proportional to

k
ki i
which biases masks towards covering smaller areas. Hierarchical consistency can be encouraged by
penalizing violations of the ordering implied by the tree, such as a child being active where the parent is
inactive.

Optimization proceeds by gradient-based methods. Masks can be parameterized using logits

uk c RHXW

and a sigmoid mapping

k _ k

where o is the logistic function. This ensures that mask values remain within 0, 1 without explicit
projection. The hierarchy composition operator and the diffusion process are differentiable, at least in an
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approximate sense when sampling noise is treated as fixed or reparameterized, enabling backpropagation
from the loss to the mask parameters and, if desired, to 8 [16]. In practice, the diffusion process may be
truncated or approximated to reduce computational cost, and gradients may be accumulated across a
reduced set of time steps.

Numerical stability is a central concern when optimizing masks in the presence of normalization-
based composition. As observed in the gradient expressions, when denominators d; become large due to
overlapping masks with high strengths, gradients with respect to individual mask entries can become
small. To counteract this, several strategies can be employed. One approach is to impose an upper bound
on the number of overlapping masks at each pixel, for example by pruning nodes whose masks are
negligible in a given region. Another approach is to adapt strengths s;, during optimization, either by
learning them or by updating them based on overlap statistics, so that the effective normalization remains
in a range that produces meaningful gradients.

Learning the hierarchy structure itself is more challenging than learning mask values. One may
start with a flat collection of candidate masks derived from segmentation or attention maps and then
cluster them into groups that form parent nodes. A discrete optimization problem arises, where cluster
assignments must be determined to maximize an alignment objective. Because direct optimization
over combinatorial structures is difficult, a relaxed formulation can be used, where each mask has a
soft assignment to multiple parent nodes, encoded by coefficients forming a stochastic matrix. The
hierarchy emerges as these coeflicients become more peaked during optimization. Techniques from
matrix factorization and graph clustering can be adapted to encourage tree-like structures, although
enforcing strict tree constraints typically requires discrete postprocessing.

In addition to gradient-based approaches, numerical methods from convex optimization and proximal
algorithms can be useful when certain parts of the objective are convex in mask variables [17]. For
example, if the regularization term and a subset of the loss are convex in M while the remainder is
treated as fixed, one can perform proximal updates on M that solve subproblems with closed-form or
efficiently solvable solutions. An alternating minimization scheme can be employed, where masks are
updated given fixed generative outputs, and then generative parameters are updated given fixed masks.
Although the overall problem is nonconvex, such schemes can help navigate the optimization landscape.

Stochastic optimization plays a role when multiple images and prompts are used to learn generic
hierarchical composition parameters. In that setting, mask parameters or composition hyperparameters
such as depth-dependent strengths and normalization exponents can be treated as global variables shared
across data. Mini-batch stochastic gradient descent or related methods can be applied, with gradients
aggregated over different editing tasks. Regularization then serves not only to stabilize optimization but
also to encourage generalization across images and prompts.

The numerical implementation must also account for memory and time constraints. Hierarchical
masks increase memory usage because multiple mask fields at different levels and scales must be stored.
Techniques such as mixed precision, sparse storage for masks with limited support, and recomputation of
certain intermediate quantities can reduce memory footprint. Parallelization across pixels, nodes, and
diffusion time steps is natural and maps well to modern hardware. Exploiting spatial locality in masks,
for example by grouping pixels into tiles and processing tiles independently where possible, can further
improve efficiency.

6. Experiments and Analysis

The behavior of hierarchical mask composition for high-resolution text-guided image editing can be
examined through a set of editing scenarios that probe different aspects of spatial control, boundary
handling, and interaction between local and global textual instructions [18]. While comprehensive
numeric benchmarking involves large-scale experiments, qualitative and conceptual analysis already
highlights characteristic effects that distinguish hierarchical composition from flat masking.

One class of scenarios involves local attribute modification, such as changing the color or texture of a
specific object part while maintaining the rest of the image unchanged. For example, consider an image
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containing a person wearing clothing with multiple regions, and a prompt that specifies alterations to only
one garment. A flat mask that roughly covers the garment may either leave unwanted gaps or extend into
neighboring regions. With hierarchical masks, one can define a parent region corresponding to the general
area of the person and a child region corresponding to the specific garment. The parent node encodes
broader stylistic constraints, while the child node encodes the detailed textual instruction. During editing,
the framework allocates influence from the parent to the child in overlapping areas, allowing the garment
edit to take precedence while maintaining global consistency where the parent is active and the child is not.

Boundary fidelity is another aspect where hierarchical composition exhibits distinct behavior. In
many images, fine structures such as hair, foliage, or intricate textures lie near regions that users may
wish to edit. Hard binary masks often introduce visible seams where edited and unedited regions meet,
especially at high resolution. Soft masks alleviate this but can lead to ambiguous regions where both
original and edited content contribute. In the hierarchical framework, an additional narrow band of
intermediate nodes can be introduced along boundaries, with masks that smoothly transition from one
region to another. These intermediate nodes can carry text conditions or editing strengths that interpolate
between neighboring regions, allowing the generative model to synthesize content that naturally bridges
the transition [19]. The composition rules treat these nodes as part of the hierarchy, so they receive
influence from both sides while moderating the final output.

A further set of experiments examines the interaction between global and local instructions. For
instance, a prompt may specify a global style, such as a particular artistic rendering, and a local edit,
such as inserting an object in one corner. Without hierarchical composition, applying the global style
uniformly may inadvertently alter the local insert in unintended ways or cause local edits to propagate.
With a hierarchical tree, a root node can reflect the global style, while child nodes define regions that are
exempt from certain aspects of the style or that receive a modified version of it. By adjusting strengths
and allocation parameters, the editor can maintain the global style in the background while preserving
the identity of the inserted object, or vice versa. Observing how the generated images change as these
parameters are varied provides insight into the expressive capacity of the hierarchy.

Resolution scaling experiments shed light on how hierarchical composition affects consistency when
editing images at resolutions substantially higher than those used for training the generative model. In
many cases, editing a high-resolution image requires tiling, downsampling, or multi-pass processing.
Flat masks may lead to discontinuities across tiles or to inconsistencies when details are synthesized
at different scales. In the hierarchical framework, coarse masks at low resolutions guide the overall
distribution of edits, while finer masks at high resolutions refine details. By downsampling masks in a
controlled manner and reusing the same hierarchy across scales, one can maintain a consistent editing
policy throughout the processing pipeline. Visual inspection of results under different scaling factors can
reveal whether the hierarchy helps preserve semantics and spatial alignment as resolution changes [20].

Another dimension of analysis concerns robustness to mask inaccuracies. In realistic use cases, masks
obtained from automated segmentation or manual sketching may be imprecise. A flat mask that is
slightly misaligned can lead to edits affecting unintended areas. Hierarchical composition allows partial
correction of such errors by assigning moderate-strength child nodes that refine the mask in problematic
regions. Through optimization, these child masks can shrink or expand to better align with the true
object boundaries, while the parent masks retain broader coverage. The extent to which the hierarchy can
compensate for initial inaccuracies depends on the regularization strength and the richness of the textual
cues. Empirical evaluation involves introducing controlled perturbations to initial masks and observing
the degree of recovery achieved by the hierarchical optimization.

Quantitative measures, while dependent on specific implementations and datasets, generally fall into
categories such as text-image alignment, fidelity to original content, and localization of edits. Text-image
alignment can be assessed by encoding the edited images and textual prompts into a joint embedding space
and measuring similarity. Fidelity can be measured by comparing edited and original images in regions
that are intended to remain unchanged, using metrics that capture perceptual similarity. Localization
can be evaluated by measuring how far edited pixels extend beyond intended regions, for example by
computing the overlap between difference maps and masks. Hierarchical composition is expected, in
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many settings, to yield lower leakage of edits outside target regions compared to flat masking, because it
explicitly models precedence and allocates influence accordingly.

An additional aspect is interpretability [21]. Because the hierarchy organizes masks and textual
conditions in a structured manner, it becomes feasible to visualize the contribution of each node to the
final edit. For each node, one can render a map of effective mask values and a corresponding visualization
of how the edit would look if only that node were active. Comparing these visualizations across nodes
helps users understand how their instructions are being applied. This contrasts with flat masks, where the
mapping from text to spatial effects can be more opaque, especially when multiple prompts are combined.
In interactive settings, users can adjust node strengths or modify masks directly and immediately see
localized effects, facilitating a more controllable editing process.

Finally, the experiments highlight limitations of the hierarchical approach. Complex scenes with many
overlapping objects and subtle lighting effects may require deep hierarchies and numerous nodes to
achieve fine-grained control, increasing computational cost and optimization difficulty. When textual
instructions are vague or global in nature, the overhead of managing a hierarchy may not provide clear
benefits over simpler masking. Additionally, if the underlying generative model has limited capacity to
respect spatial conditioning, no mask hierarchy can fully enforce desired behavior. These observations
underline that hierarchical mask composition is most beneficial when there is a clear correspondence
between textual instructions and spatial structure, and when high-resolution detail and precise localization
are central to the editing task.

7. Conclusion

Hierarchical mask composition offers a structured way to control spatial conditioning in high-resolution
text-guided image editing. By organizing masks into a hierarchy that reflects the nested and overlapping
structure of visual scenes and textual instructions, the framework enables nuanced regulation of where
and how edits are applied. The formulation treats masks as scalar fields organized in a tree-like structure
and defines composition operators that map intrinsic mask values to effective influences, respecting
precedence and conserving total conditioning strength [22]. When integrated with text-conditioned
diffusion models and multi-scale architectures, hierarchical masks can align the semantic hierarchy
implied by the prompt with the spatial and scale hierarchy inherent in the generative process.

The mathematical analysis describes how the composition operator can be expressed in linear algebraic
form, how normalization and hierarchical allocation interact, and how gradients propagate when masks
are optimized jointly with generative parameters. Considerations about nonnegativity, boundedness,
and stability guide the design of composition rules that remain numerically tractable even when many
masks overlap. The use of differentiable parameterizations for masks, together with regularization terms
that enforce smoothness and sparsity, allows optimization methods from continuous optimization and
numerical analysis to be applied to what is fundamentally a spatially structured editing problem.

From a practical perspective, hierarchical mask composition provides mechanisms for balancing
global and local edits, improving boundary handling, and achieving better edit localization at high
resolution than is typically possible with flat masks. The framework accommodates user-provided masks,
automated segmentations, and learned refinements, and supports interactive workflows where users can
adjust node strengths and structures. At the same time, it introduces additional complexity in managing
the hierarchy and associated parameters, which must be justified by gains in control and quality for the
editing tasks at hand.

Several directions for further work arise from this formulation. One avenue involves learning hierarchy
structures directly from data, using priors on scene organization and textual descriptions to infer suitable
trees or graphs over regions. Another direction concerns deeper integration with the internals of generative
models, for example by associating nodes with layers or channels rather than only with spatial masks,
or by using hierarchical masks to modulate not just conditioning signals but also noise schedules and
step sizes in the diffusion process. Extending the framework to three-dimensional or multi-view settings,
where masks become volumetric fields or are defined on surfaces, is also a natural progression for
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applications involving 3D-aware editing. hierarchical mask composition supplies a principled approach
to structuring spatial control in text-guided image editing. It blends concepts from image processing,
linear algebra, and optimization with the capabilities of modern generative models, yielding a flexible
and mathematically grounded tool for handling complex, high-resolution editing tasks where multi-level
textual instructions and spatial precision are central considerations [23].
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