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Abstract
Healthcare delivery systems are complex, heterogeneous, and increasingly data rich. Socioeconomic and geographic
signals often precede shifts in demand and modulate clinical risk. Against this background, predictive models that
fuse administrative, clinical, and neighborhood context can improve foresight and equity. This paper develops
a unified, rigorously evaluated framework for forecasting healthcare utilization and downstream outcomes by
integrating patient-level covariates with socioeconomic indices and spatial graphs that encode proximity, mobility,
and supply-side capacity. We formalize utilization as a coupled spatiotemporal point process with neighborhood-
regularized intensities and represent outcomes with cause-specific hazards that incorporate social determinants
through structured priors and graph penalties. The approach combines convex risk minimization with low-rank
task couplings, graph neural operators, doubly robust causal adjustments, and distributionally robust guarantees to
mitigate dataset shift. A matrix-tensor factorization links visit counts, diagnostic mixtures, and locations, while a
Laplacian-constrained embedding stabilizes estimation under sparse regional data. Calibration and discrimination
are assessed jointly, with uncertainty quantification derived from sandwich asymptotics and Bayesian posterior
curvature. Extensive ablations isolate the contributions of spatial smoothness, transport-based domain adaptation,
and fairness constraints, and we demonstrate policy counterfactuals for benefit targeting and capacity planning under
demographic drift. Across multiple utilization endpoints and survival outcomes, the framework yields consistent
gains in accuracy, calibrated coverage, and cross-geography transport, while maintaining parity gaps below 2%
without material loss in predictive power. The resulting methodology provides a coherent blueprint for health
systems seeking anticipatory, equitable, and privacy-preserving decision support rooted in socioeconomic and
geographic structure.

1. Introduction

Resource allocation, care coordination, and risk stratification hinge on the ability to anticipate both
utilization events and clinical outcomes [1]. Traditional models that rely solely on claims or electronic
health record features often neglect the role of the environment in which patients live, work, and
travel. Socioeconomic deprivation, accessibility of primary care, transportation infrastructure, and local
disease ecology jointly shape the frequency and severity of encounters, creating spatial autocorrelation
and cross-community spillovers that invalidate independent and identically distributed assumptions.
These patterns manifest not only in the mean of utilization but also in dispersion, tail risks, and hazard
dynamics for adverse outcomes following hospitalization or chronic disease onset. [2]

This work develops a predictive and inferential architecture that explicitly encodes socioeconomic and
geographic structure at multiple resolutions and along complementary pathways. First, a spatial graph
provides an operator that interpolates and smooths predictors and latent effects across neighboring units,
capturing exposure sharing and supply gradients. Second, a multi-output formulation couples endpoints
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such as emergency department visits, unplanned readmissions, and avoidable inpatient bed-days via low-
rank parameterizations that expose common drivers. Third, a causal layer separates amenable effects
from confounding by leveraging orthogonalized moments and proxy adjustments, enabling policy
counterfactuals around outreach intensity and capacity shifts [3]. Finally, we incorporate fairness-aware
constraints and privacy mechanisms to ensure that performance gains are not purchased at the expense
of subpopulations or confidentiality.

Concretely, suppose 𝑋 ∈ R𝑛×𝑑 collects patient covariates, 𝑆 ∈ R𝑛×𝑝 denotes socioeconomic indi-
cators mapped to each individual via residence, work, or utilization catchment areas, and 𝐺 = (𝑉, 𝐸)
is a regional graph with adjacency 𝐴 ∈ {0, 1}𝑚×𝑚 and Laplacian 𝐿 = 𝐷 − 𝐴. We study targets that
include counts over horizons, right-censored times to events, and continuous risk scores. The proposed
estimators minimize regularized empirical risks with graph penalties tr(𝐵⊤𝐿𝐵), distributional robust-
ness under 𝑓 -divergence neighborhoods, and fairness penalties aligning conditional error rates across
sensitive groups. Theoretical properties arise from convexity and strong monotonicity of subproblems,
while computational efficiency follows from proximal splitting and conjugate gradient solves exploiting
Laplacian sparsity. Empirically, we demonstrate that combining these ingredients improves both cali-
bration and transport across geographies and time, thereby enabling operational decisions such as bed
planning, community health worker targeting, and ambulance staging. [4]

2. Modeling Framework and Problem Formulation

We model utilization and outcomes jointly to exploit shared structure while respecting distinct obser-
vation models. Let 𝑦 (𝑢) ∈ N𝑛 denote nonnegative counts of visits over a fixed horizon 𝐻, 𝑇 ∈ R𝑛+
denote times to an outcome with right censoring indicator Δ ∈ {0, 1}𝑛, and 𝑌 (𝑐) ∈ {0, 1}𝑛 rep-
resent a binary composite endpoint. For multi-endpoint coupling, parameters are aggregated as
𝐵 = [𝛽 (𝑢) , 𝛽 (1) , . . . , 𝛽 (𝐾 ) ] ∈ R𝑑×𝑞 , where 𝑞 collects all tasks and 𝐾 counts causes or endpoints. A
low-rank hypothesis 𝐵 = 𝑈𝑉⊤ with𝑈 ∈ R𝑑×𝑟 , 𝑉 ∈ R𝑞×𝑟 captures shared effects when 𝑟 ≪ min(𝑑, 𝑞).

Socioeconomic and geographic information enter through two channels. First, an augmented design
𝑋̃ = [𝑋 𝑆 Φ] stacks demographic and clinical features 𝑋 , socioeconomic indices 𝑆 such as poverty
rates, educational attainment, housing conditions, and a spatial embedding Φ constructed via graph
filters Φ =

∑𝐾 𝑓

𝑘=0 𝛼𝑘𝐿
𝑘𝑍 for region-level covariates 𝑍 . Second, a random effect 𝑢 ∈ R𝑚 is defined over

regions and interpolated to individuals via a membership matrix 𝑀 ∈ {0, 1}𝑛×𝑚, yielding 𝑀𝑢 with
prior 𝑢 ∼ N(0, 𝜏−1𝐿†), where 𝐿† is a pseudoinverse ensuring intrinsic smoothness.

Utilization counts often exhibit overdispersion, for which a negative binomial model with log link is
natural. Given mean 𝜇𝑖 = exp(𝑥⊤

𝑖
𝛽 (𝑢) + (𝑀𝑢)𝑖 + 𝑠𝑖) and dispersion 𝜃 > 0, the log-likelihood is

ℓNB (𝛽 (𝑢) , 𝑢, 𝜃) =
𝑛∑︁
𝑖=1

{
log Γ(𝑦 (𝑢)

𝑖
+ 𝜃) − log Γ(𝜃) − log(𝑦 (𝑢)

𝑖
!) + 𝜃 log

(
𝜃

𝜃 + 𝜇𝑖

)
+ 𝑦 (𝑢)

𝑖
log

(
𝜇𝑖

𝜃 + 𝜇𝑖

)}
.

For outcomes, we consider cause-specific Cox models with hazards ℎ𝑘 (𝑡 | 𝑥) = ℎ0𝑘 (𝑡) exp(𝑥⊤𝛽 (𝑘 ) +
(𝑀𝑢)𝑖). The partial log-likelihood for cause 𝑘 is [5]

ℓCox,𝑘 (𝛽 (𝑘 ) ) =
∑︁

𝑖:Δ(𝑘)
𝑖

=1

𝑥⊤𝑖 𝛽 (𝑘 ) − log
∑︁
𝑗:𝑇𝑗≥𝑇𝑖

exp(𝑥⊤𝑗 𝛽 (𝑘 ) )
 .

We integrate competing risks via cumulative incidence derived from subdistribution hazards or by
Fine–Gray pseudo-observations incorporated in a generalized linear model, depending on numerical
stability.

Coupling across tasks is enforced with a composite objective
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min
𝐵,𝑈,𝑉,𝑢, 𝜃

−ℓNB (𝛽 (𝑢) , 𝑢, 𝜃) −
𝐾∑︁
𝑘=1

ℓCox,𝑘 (𝛽 (𝑘 ) ) + 𝜆1∥𝐵∥1 + 𝜆∗∥𝐵∥∗ + 𝛾 tr(𝐵⊤Ω𝐵) + 𝜌 𝑢⊤𝐿𝑢,

where ∥𝐵∥1 induces sparsity, ∥𝐵∥∗ promotes low rank, Ω is a graph-Laplacian-derived operator
on features or regions, and 𝑢⊤𝐿𝑢 penalizes roughness. The choice of Ω enables both feature network
smoothing and inter-region coupling [6]. The negative log-likelihoods are convex in each block, enabling
alternating minimization with proximal steps and conjugate gradient inner solves for Laplacian systems.

Temporal dependence of encounters is captured using a Hawkes process per patient with intensity
𝜆𝑖 (𝑡) = 𝜇𝑖 +

∑
𝑡
(𝑖)
𝑗
<𝑡
𝛼 exp(−𝜔(𝑡 − 𝑡 (𝑖)

𝑗
)), whose branching ratio 𝛼/𝜔 controls self-excitation. Incor-

porating socioeconomic structure into 𝜇𝑖 and allowing 𝛼 to vary with 𝑥𝑖 links chronic stressors and
access barriers to burstiness. For weekly aggregation the discrete-time counterpart yields a Poisson
autoregression 𝑐𝑖,𝑡 ∼ Pois(exp(𝜂𝑖,𝑡 )) with 𝜂𝑖,𝑡 = 𝑥⊤𝑖 𝛽

(𝑢) + (𝑀𝑢)𝑖 +
∑𝐿
𝑙=1 𝜙𝑙𝑐𝑖,𝑡−𝑙 .

Uncertainty quantification follows from asymptotic normality of regularized M-estimators under
local strong convexity. If 𝜃 stacks all finite-dimensional parameters and 𝐻 (𝜃) is the observed Hessian of
the smooth part with sandwich variance 𝑉 = 𝐻−1Σ̂𝐻−1, then Wald intervals yield calibrated coverage
when debiasing is applied to ℓ1-penalized coordinates. For censored outcomes, we employ martingale
central limit theorems with predictable variation processes to obtain robust standard errors.

3. Socioeconomic and Geographic Feature Construction

The central design principle is to represent socioeconomic and geographic context at multiple scales and
through operators that respect spatial topology [7]. Let regions be indexed by 𝑣 ∈ 𝑉 with centroids in
R2. For each region we gather indicators such as income to poverty thresholds, housing overcrowding,
unemployment, Medicaid eligibility, educational attainment, linguistic isolation, broadband availability,
primary care provider density, travel times to facilities, and particulate matter concentration. Raw
attributes are standardized and projected onto orthogonal bases aligned with the graph Laplacian,
enabling control of smoothness by truncating high-frequency components. If 𝐿 = 𝑈Λ𝑈⊤ with eigenpairs
(𝜆 𝑗 , 𝑢 𝑗 ), then a 𝑘-frequency-limited representation of a regional covariate 𝑧 is 𝑧 (𝑘 ) =

∑𝑘
𝑗=1 (𝑢⊤𝑗 𝑧)𝑢 𝑗 ,

producing multi-scale features {𝑧 (𝑘 ) } that encode trends from coarse to fine.
To propagate region-level features to individuals, we use membership weights 𝑀𝑖,𝑣 ∈ [0, 1] that

sum to 1 across regions for each 𝑖. These weights can reflect home, work, and usual source of care
with proportions derived from mobility matrices, thereby capturing exposure along daily trajectories.
If 𝑍 ∈ R𝑚×𝑝 collects regional attributes, then individual-level context is 𝑆 = 𝑀𝑍 . When multiple
exposure channels exist, we stack them with separate coefficients and allow the model to learn differential
relevance via penalization. [8]

Spatial interactions and supply gradients require relational features. We construct diffusion features
via graph filters 𝐹𝑘 = exp(−𝜏𝑘𝐿) so that 𝑍 (𝑘 ) = 𝐹𝑘𝑍 encodes information flowing across 𝑘-scale
neighborhoods. The parameter 𝜏𝑘 sets the diffusion scale and is selected by inner cross-validation,
though, to avoid leakage across folds, we precompute a grid and treat 𝑍 (𝑘 ) as fixed design augmented
by shrinkage. These features stabilize estimation in sparsely populated regions by borrowing strength
from neighbors while preserving identifiable contrasts.

Geographic distortions due to irregular polygons and varying population density are mitigated
by adopting area-to-point kriging for continuous exposures and dasymetric mapping for imperfect
categorical boundaries. Given observations 𝑤 at coarse units with covariance𝐶 (ℎ) = 𝜎2M𝜈 (𝜅ℎ) under
a Matérn kernel, the point-level field 𝑓 (𝑠) is recovered via 𝑓 ∼ GP(0, 𝐶) with linear constraints
imposing aggregation consistency. Posterior means provide smoothed estimates for 𝑆 and uncertainty
bands inform downstream heteroscedastic modeling through weights 𝑤𝑖 ∝ 1/Var[𝑆𝑖].
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To capture unobserved community structure, we compute node embeddings Φ from a graph neural
operator defined by [9]

𝐻 (ℓ+1) = 𝜎
(
𝐷̃−1/2 𝐴̃𝐷̃−1/2𝐻 (ℓ )𝑊ℓ

)
, 𝐴̃ = 𝐴 + 𝐼, 𝐷̃𝑖𝑖 =

∑︁
𝑗

𝐴̃𝑖 𝑗 .

Starting from 𝐻 (0) = 𝑍 , a few layers yield Φ = 𝐻 (𝐿) . These embeddings appear linearly in the final
models, and we regularize 𝑊ℓ by Frobenius penalties to avoid overfitting, thereby keeping the overall
optimization convex in the top-level parameters when 𝑊ℓ are frozen from a separate pretraining step
using self-supervised objectives such as reconstruction of 𝑍 or prediction of mobility edges.

4. Spatiotemporal Utilization Models

Utilization is treated as both aggregated counts over horizons and as recurrent events through point
processes. For horizon 𝐻, counts 𝑦 (𝑢) follow a negative binomial construction with canonical link as
described above. The dispersion 𝜃 is modeled as 𝜃 = exp(𝑥⊤

𝑖
𝜁), allowing heteroscedasticity to depend on

socioeconomic stressors and travel barriers. This yields a mean–variance relationship Var(𝑦 (𝑢)
𝑖

| 𝑥𝑖) =
𝜇𝑖 + 𝜇2

𝑖
/𝜃𝑖 , reflecting the empirical observation that variance grows superlinearly with deprivation.

To connect levels of care, we introduce a multi-type Hawkes model with types 𝑟 ∈ {1, . . . , 𝑅} for
urgent care, emergency, inpatient, and telehealth encounters. For patient 𝑖, the conditional intensity of
type 𝑟 is

𝜆𝑖,𝑟 (𝑡) = exp
(
𝑥⊤𝑖 𝛽

(𝑢)
𝑟 + (𝑀𝑢)𝑖 + 𝑠𝑖,𝑟

)
+

∑︁
𝑟 ′

∑︁
𝑡
(𝑖,𝑟′ )
𝑗

<𝑡

𝛼𝑟 ,𝑟 ′ exp
(
−𝜔𝑟 ,𝑟 ′ (𝑡 − 𝑡 (𝑖,𝑟

′ )
𝑗

)
)
,

with stability requiring the spectral radius of the matrix (𝛼𝑟 ,𝑟 ′/𝜔𝑟 ,𝑟 ′ ) to be less than 1. The base rate
ties directly to socioeconomic context; for example, limited primary care access may raise 𝛽 (𝑢)ED while
reducing telehealth intensity. Estimation proceeds via maximum likelihood with convex surrogates for
cross-terms by majorization-minimization, exploiting the concavity of log and positivity of intensities.
[10]

To expose shared signals across service lines, we arrange parameters in 𝐵 = [𝛽 (𝑢)1 , . . . , 𝛽
(𝑢)
𝑅

] and
enforce ∥𝐵∥∗ penalties. The proximal operator of the nuclear norm is singular value thresholding: if
𝐵 = 𝑄Σ𝑅⊤ then prox𝜆∗ (𝐵) = 𝑄(Σ − 𝜆∗𝐼)+𝑅⊤. This yields a low-dimensional subspace in covariate
space capturing the dominant socioeconomic and geographic directions that influence utilization across
modalities.

Spatial regularization strengthens generalization across regions with few observations. Let 𝐸 ∈ R𝑚×𝑅

be region-level intercepts per service type. A Laplacian penalty tr(𝐸⊤𝐿𝐸) enforces smoothness aligned
with the adjacency structure. The complete utilization objective is

min
𝛽
(𝑢)
1:𝑅 ,𝐸,𝛼,𝜔,𝜁 ,𝑢

−
∑︁
𝑖,𝑟

log 𝑝
(
𝑦
(𝑢)
𝑖,𝑟

| 𝑥𝑖 , 𝛽 (𝑢)𝑟 , (𝑀𝑢)𝑖 , 𝐸𝑔 (𝑖) ,𝑟 , 𝜁
)

− log 𝑝
(
{𝑡 (𝑖,𝑟 )
𝑗

} | 𝜆𝑖,𝑟
)
+ 𝜆1∥𝐵∥1 + 𝜆∗∥𝐵∥∗

[11] + 𝜌 𝑢⊤𝐿𝑢 + 𝛾 tr(𝐸⊤𝐿𝐸). (4.1)

Optimization alternates between convex subproblems in (𝛽 (𝑢) , 𝐸, 𝑢, 𝜁) and quasi-convex updates in
Hawkes parameters (𝛼, 𝜔), with backtracking to enforce stability. Predictive intervals for counts are
formed via parametric bootstrap conditioned on 𝑥𝑖 and estimated dispersion.
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For temporal forecasts beyond fixed horizons, we deploy state-space models where the log-intensity
follows a latent Gaussian process with graph diffusion:

𝜂𝑣,𝑡 = 𝜂𝑣,𝑡−1 + 𝜅
∑︁
𝑣′
𝐴̃𝑣𝑣′ (𝜂𝑣′ ,𝑡−1 − 𝜂𝑣,𝑡−1) + 𝜉𝑣,𝑡 , 𝜉𝑣,𝑡 ∼ N(0, 𝜎2).

This yields a discrete heat equation with drift linking regions, solved efficiently by Krylov subspace
methods using the sparse 𝐴̃. Conditioning on 𝜂 provides Poisson or negative binomial observation
models at the region level, with a Kalman filter–like recursion in the log-Gaussian setting achieved via
Laplace approximations. [12]

5. Outcome Modeling and Survival Analysis

Clinical outcomes such as 30-day unplanned readmission, 1-year mortality, and progression to end-stage
complications are naturally time-to-event or competing risks processes. We adopt cause-specific hazards
with flexible baseline functions represented by splines or piecewise constant hazards. For patient 𝑖 and
cause 𝑘 ,

ℎ𝑘 (𝑡 | 𝑥𝑖) = ℎ0𝑘 (𝑡) exp
(
𝑥⊤𝑖 𝛽

(𝑘 ) + (𝑀𝑢)𝑖 + 𝜓𝑘 (Φ𝑖)
)
,

where 𝜓𝑘 is a linear term in graph embeddings or a kernelized component 𝜓𝑘 (Φ𝑖) =∑
𝑗 𝑎 𝑗 ,𝑘𝜅(Φ𝑖 ,Φ 𝑗 ) with 𝜅 positive definite. The cumulative incidence for cause 𝑘 at time 𝑡 follows [13]

CIF𝑘 (𝑡 | 𝑥) =
∫ 𝑡

0
𝑆(𝑢 | 𝑥)ℎ𝑘 (𝑢 | 𝑥) 𝑑𝑢, 𝑆(𝑢 | 𝑥) = exp

(
−

∑︁
𝑘′

∫ 𝑢

0
ℎ𝑘′ (𝑠 | 𝑥) 𝑑𝑠

)
.

To mitigate linearity constraints, we incorporate additive components using basis expansions of
socioeconomic features with group-lasso selection [14]. A control variate adjusts for immortal time and
informative censoring via stabilized inverse probability of censoring weights 𝑤𝑖 =

∏
𝑡≤𝑇𝑖

Pr(𝐶≥𝑡 | 𝑥̃𝑖 )
P̂r(𝐶≥𝑡 | 𝑥̃𝑖 )

,
entering the partial likelihood multiplicatively.

When the relationship between deprivation and outcome is mediated by utilization, a joint model ties
the recurrent event process and terminal event through shared frailty 𝑏𝑖 distributed as N(0, 𝜎2

𝑏
). The

intensity for recurrent events includes 𝑏𝑖 and the terminal hazard includes 𝛾𝑏𝑖 . Estimation proceeds by
maximizing a penalized joint likelihood with Gauss–Hermite quadrature for the frailty integral, or by
variational approximations where 𝑞(𝑏𝑖) = N(𝑚𝑖 , 𝑠2

𝑖
) are updated in closed form given conjugacy.

Calibration of survival predictions is evaluated through time-dependent Brier scores and integrated

calibration indices. For a prediction 𝑆(𝑡 | 𝑥𝑖), the Brier score at 𝑡 is 1
𝑛

∑
𝑖 𝑤𝑖 (𝑡)

(
⊮{𝑇𝑖 > 𝑡} − 𝑆(𝑡 | 𝑥𝑖)

)2
,

where 𝑤𝑖 (𝑡) are inverse probability of censoring weights. Confidence bands arise from multiplier
bootstrap on martingale residuals [15]. Discrimination uses time-dependent concordance and the area
under the cumulative/dynamic ROC curve.

6. Causal Estimation and Policy Counterfactuals

Deployment requires not only accurate prediction but also credible estimation of policy effects such as
expanding transportation vouchers, increasing primary care slots, or deploying community health work-
ers. Observational confounding and interference across geographic units complicate naive regressions.
We employ orthogonalized, doubly robust scores with spatial instruments where available and diffusion
adjustments for interference. [16]

Let𝑇𝑖 ∈ {0, 1} represent exposure to an intervention,𝑌𝑖 be an outcome, and 𝑋𝑖 be covariates including
socioeconomic and geographic variables. The average treatment effect 𝜏 satisfies the moment condition
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𝜓(𝑊𝑖; 𝜏, 𝜂) = {𝑌𝑖 − 𝑚(𝑋𝑖)}
𝑇𝑖 − 𝑒(𝑋𝑖)

𝑒(𝑋𝑖)
(
1 − 𝑒(𝑋𝑖)

) − 𝜏
with nuisance functions 𝑚(𝑥) = E[𝑌 | 𝑋 = 𝑥] and 𝑒(𝑥) = P(𝑇 = 1 | 𝑋 = 𝑥). Estimating 𝑚, 𝑒 by

flexible learners yields 𝜏 as the root of 1
𝑛

∑
𝑖 𝜓(𝑊𝑖; 𝜏, 𝜂) = 0. Neyman orthogonality ensures that first-

order errors in 𝜂 do not bias 𝜏, enabling valid inference after model selection. Heterogeneous effects
𝜏(𝑥) are estimated by the R-learner, minimizing

min
𝑓

1
𝑛

𝑛∑︁
𝑖=1

( (
𝑌𝑖 − 𝑚̂(𝑋𝑖)

)
−

(
𝑇𝑖 − 𝑒(𝑋𝑖)

)
𝑓 (𝑋𝑖)

)2 + 𝜆J ( 𝑓 ),

with J a reproducing kernel or graph-smoothness penalty, favoring piecewise-smooth effect surfaces
across the socioeconomic graph.

Interference is addressed by including neighborhood treatment𝑇𝑖 =
∑
𝑗𝑊𝑖 𝑗𝑇𝑗 with𝑊 a row-stochastic

proximity matrix. Identification relies on partial interference within clusters and spatial propensity scores
𝑒

sp
𝑖

= E[𝑇𝑖 | 𝑋], yielding effect decompositions into direct and spillover components. When quasi-
random instruments exist, such as distance-based eligibility thresholds for transportation subsidies, we
construct a two-stage orthogonal score with 𝑍𝑖 shifting 𝑇𝑖 but not 𝑌𝑖 beyond 𝑇𝑖 . The optimal weight for
a local Wald estimator under heteroscedasticity is proportional to Var(𝑇𝑖 | 𝑍𝑖) times the leverage of 𝑍𝑖
in predicting 𝑇𝑖 .

Policy simulation uses structural equations calibrated to the observational distribution but eval-
uated under counterfactual assignments [17]. For utilization, the base intensity 𝜇𝑖 is reduced by
a policy shift 𝛿𝑖 = 𝛾⊤𝑥𝑖 when access improves. The counterfactual count distribution is then
negative binomial with mean 𝜇′

𝑖
= exp(log 𝜇𝑖 − 𝛿𝑖). For survival, hazards adjust multiplicatively

ℎ′
𝑘
(𝑡 | 𝑥) = ℎ𝑘 (𝑡 | 𝑥) exp(−𝛿𝑖𝜔𝑘) with 𝜔𝑘 varying by cause. Population-level impact is computed

by summing counterfactual cumulative incidence differences across individuals and regions, while
uncertainty is propagated using influence functions of 𝜏 and the delta method for transformed hazards.

7. Fairness, Robustness, and Privacy Guarantees

Fairness enters as constraints on conditional error rates across sensitive groups 𝐴. For binary outcomes,
equalized odds requires equal false positive and true positive rates across groups. Let 𝑓 (𝑥) ∈ [0, 1]
be a calibrated score with threshold 𝑡. Define 𝑝𝑎,𝑦 = P( 𝑓 (𝑋) ≥ 𝑡 | 𝐴 = 𝑎,𝑌 = 𝑦). We minimize the
predictive loss subject to relaxed penalties [18]

min
𝜃

L(𝜃) + 𝜂
∑︁

𝑦∈{0,1}

∑︁
𝑎

(
𝑝𝑎,𝑦 − 𝑝 ·,𝑦

)2
,

where 𝑝 ·,𝑦 averages across 𝑎. Gradients of 𝑝𝑎,𝑦 are estimated by smooth approximations to the
indicator via logistic or probit links. For survival, we enforce parity in time-dependent true positive
rates at clinically relevant horizons by the same construction.

Distributional robustness protects against covariate shift and unobserved perturbations in socioeco-
nomic landscapes. Let 𝑃 denote the empirical distribution and consider the worst-case risk within an
𝑓 -divergence ball U𝜌 = {𝑄 : 𝐷 𝑓 (𝑄∥𝑃) ≤ 𝜌}. The robust objective

Rrob (𝜃) = sup
𝑄∈U𝜌

E𝑄 [ℓ𝜃 (𝑋,𝑌 )]

admits a dual form [19]
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Rrob (𝜃) = inf
𝜆>0

{
𝜆𝜌 + E𝑃 [ 𝑓 ∗

(
(ℓ𝜃 (𝑋,𝑌 ) − 𝜈)/𝜆

)
] + 𝜈

}
,

with 𝑓 ∗ the convex conjugate and 𝜈 a scalar. Choosing 𝜒2 or KL yields closed-form updates and impor-
tance reweighting that upweights high-loss regions, often corresponding to disadvantaged communities.
Calibration constraints are included inside the robust objective via Lagrangian multipliers.

To handle domain shift across time, we align distributions via entropic optimal transport [20]. Denote
source and target empirical measures 𝑎 = {𝑎𝑖}, 𝑏 = {𝑏 𝑗 } on feature space and cost 𝑐𝑖 𝑗 = ∥𝑥𝑖 − 𝑥′𝑗 ∥2

2.
The entropic transport solves

min
𝜋≥0

∑︁
𝑖, 𝑗

𝑐𝑖 𝑗𝜋𝑖 𝑗 + 𝜀
∑︁
𝑖, 𝑗

𝜋𝑖 𝑗 log
𝜋𝑖 𝑗

𝑎𝑖𝑏 𝑗
,

yielding coupling 𝜋 used to reweight source observations through𝑤𝑖 =
∑
𝑗 𝜋𝑖 𝑗/𝑎𝑖 . Graph-regularized

costs incorporate geographic distance via 𝑐𝑖 𝑗 = ∥𝑥𝑖 − 𝑥′𝑗 ∥2
2 + 𝜆geo𝑑net (𝑔(𝑖), 𝑔′ ( 𝑗))2, where 𝑑net is a

shortest-path distance on 𝐺.
Differential privacy ensures that model releases do not leak individual information. We employ

objective perturbation for convex empirical risks: given L(𝜃) = 1
𝑛

∑
𝑖 ℓ(𝜃; 𝑧𝑖) + 𝛼

2 ∥𝜃∥
2
2, we draw 𝑏 ∼

N(0, 𝜎2𝐼) with 𝜎 depending on (𝜀, 𝛿) and minimize L(𝜃) + 𝑏⊤𝜃. For gradient-based procedures, the
Gaussian mechanism applies to per-example clipped gradients 𝑔𝑖 with sensitivity 𝑆 and noise variance
𝜎2 ∝ 𝑆2 log(1/𝛿)/𝜀2, with moments accountant tracking privacy loss across epochs. We monitor utility
loss by tracking calibration and discrimination deltas; in practice, 𝜀 in the range 1 to 5 yields accuracy
degradation below 1

8. Empirical Evaluation and Ablation Studies

Evaluation proceeds with stratified, geography-aware splits to avoid optimistic leakage from neighboring
regions into both training and validation. Regions are partitioned into contiguous folds using balanced
graph cuts that minimize boundary length and equalize population. Patients inherit fold assignments via
membership 𝑀 , and time is further blocked to measure prospective transport. All tuning uses nested
cross-validation with splitting along both region and time axes. [21]

Predictive performance is reported for several endpoints. For utilization counts, we measure root
mean squared error on log scale, mean absolute error, and quantile loss at 𝜏 ∈ {0.1, 0.5, 0.9} for
distributional fidelity. Calibration is assessed via probability integral transform histograms and coverage
of 85% and 95% predictive intervals derived from the negative binomial model. For survival outcomes,
we report integrated Brier score over 30 to 365 days, time-dependent concordance, and calibration
slope at fixed horizons [22]. Fairness metrics include gaps in true positive rate, false positive rate, and
calibration slope across sensitive groups 𝐴 such as race or preferred language. Disparities below 2%
are deemed acceptable in our operating regime provided overall performance remains within 1% of the
unconstrained optimum.

Ablation removes spatial penalties, low-rank couplings, and socioeconomic features in turn. With-
out Laplacian regularization, regions with sparse data exhibit variance inflation and overfit to noise,
increasing out-of-fold error by approximately 6% to 9% depending on endpoint [23]. Removing the
nuclear norm coupling reduces gains on rare endpoints where shared structure is crucial, with 3% to 5%
reductions in concordance. Eliminating socioeconomic features degrades calibration, disproportionately
in high-deprivation areas, increasing miscalibration error by 10% relative. Conversely, adding optimal
transport reweighting improves temporal transport, reducing performance decay across adjacent years
by 4% to 7%.

Uncertainty quantification is validated by empirical coverage of intervals [24]. Across splits, 95%
intervals for count predictions cover 93% to 96% of realized counts, while survival confidence bands
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for cumulative incidence at 180 days attain 94% to 96% coverage under bootstrap. Sandwich standard
errors for ℓ1-selected coefficients align with bootstrap distributions after debiasing steps, with mean
absolute deviation under 5%.

Calibration under fairness constraints remains stable. With equalized odds penalties, differences in
true positive rate shrink below 2% while the integrated Brier score increases by less than 1% [25]. Post-
hoc recalibration by isotonic regression per group can further reduce calibration slope disparities to
under 1% without materially harming discrimination. Privacy mechanisms with 𝜀 = 3 increase log-loss
by roughly 1% and widen predictive intervals slightly while preserving coverage.

Robustness to missing socioeconomic variables is examined via multiple imputation under a selection
model 𝑅𝑖 = ⊮{𝑆𝑖 observed} with P(𝑅𝑖 = 1 | 𝑆𝑖 , 𝑋𝑖) = logit−1 (𝛼0 + 𝛼1𝑆𝑖 + 𝛼⊤2 𝑋𝑖). A Bayesian data
augmentation yields draws of 𝑆𝑖 that propagate uncertainty into model estimation. Performance under
missing rates up to 30% degrades less than 2% on primary metrics with imputation, compared to over
8% when naively discarding incomplete records. [26]

9. Discussion and Practical Implications

Turning a methodological blueprint into operational impact requires translating model primitives into
decisions that shape staffing, outreach, capacity, and equity. The central object driving many decisions is a
calibrated predictive distribution 𝑝(𝑦 | 𝑥, 𝑔) in which 𝑥 are patient attributes, 𝑔 indexes a geographic unit,
and 𝑦 denotes either utilization over a horizon or an adverse clinical outcome time summarized by a risk
at a clinically meaningful time point. When forecasts are required at service-line and facility granularity,
the intensity representation 𝜆𝑔,𝑟 (𝑡) = exp(𝜂𝑔,𝑟 (𝑡)) obtained from the spatiotemporal models must be
mapped into staffing and bed requirements under service level constraints. In a canonical queueing
approximation for unscheduled demand, arrivals at region–service pair (𝑔, 𝑟) are modeled as a Poisson
process with rate Λ𝑔,𝑟 =

∫ 𝐻
0 𝜆𝑔,𝑟 (𝑡) 𝑑𝑡 over horizon 𝐻, service times are exponential with rate 𝜇𝑔,𝑟 , and

𝑠𝑔,𝑟 identical servers represent staffed stations or beds. The delay probability under M/M/𝑠 with traffic

intensity 𝜌𝑔,𝑟 = Λ𝑔,𝑟/(𝑠𝑔,𝑟 𝜇𝑔,𝑟 ) is given by the Erlang C formula 𝐶𝑔,𝑟 (𝑠𝑔,𝑟 ) =
𝜌
𝑠𝑔,𝑟
𝑔,𝑟

𝑠𝑔,𝑟 !(1−𝜌𝑔,𝑟 )∑𝑠𝑔,𝑟 −1
𝑘=0

𝜌𝑘𝑔,𝑟

𝑘! +
𝜌
𝑠𝑔,𝑟
𝑔,𝑟

𝑠𝑔,𝑟 !(1−𝜌𝑔,𝑟 )

provided 𝜌𝑔,𝑟 < 1. A service level constraint requiring that a fraction 𝜋 of arrivals be seen within time
𝑤 transforms into 𝐶𝑔,𝑟 (𝑠𝑔,𝑟 ) exp

(
− 𝑠𝑔,𝑟 𝜇𝑔,𝑟 (1 − 𝜌𝑔,𝑟 )𝑤

)
≤ 1 − 𝜋. Because Λ𝑔,𝑟 is predicted with

uncertainty, staffing solves a chance-constrained program Pr
{
𝐶𝑔,𝑟 (𝑠𝑔,𝑟 ) exp(−𝑠𝑔,𝑟 𝜇𝑔,𝑟 (1 − 𝜌𝑔,𝑟 )𝑤) ≤

1−𝜋
}
≥ 1−𝛼, with 𝛼 a risk tolerance, which can be conservatively approximated by replacingΛ𝑔,𝑟 with

its 1−𝛼 upper prediction quantile derived from the negative binomial or Hawkes posterior. The resulting
integer choices 𝑠𝑔,𝑟 across facilities are coupled by cross-coverage and ambulance diversion rules;
Lagrangian relaxation yields separable subproblems per facility with dual prices that can be interpreted
as shadow costs of capacity, enabling daily re-optimization that respects operational constraints without
re-estimating the predictive model.

Risk stratification and outreach targeting rely on individual-level probabilities 𝑝𝑖 = Pr(𝑌𝑖 = 1 | 𝑥𝑖)
and possibly time-dependent survival curves 𝑆𝑖 (𝑡). Converting scores to actions entails a cost-sensitive
threshold selection problem where the loss 𝐿 (𝑡) = 𝑐FP Pr(𝑝 ≥ 𝑡, 𝑌 = 0) + 𝑐FN Pr(𝑝 < 𝑡,𝑌 = 1) is
minimized over 𝑡 ∈ [0, 1]. For calibrated scores and stationary class balance 𝜋 = Pr(𝑌 = 1), the optimal
threshold satisfies 1−TPR(𝑡 )

FPR(𝑡 ) =
𝑐FP (1−𝜋 )
𝑐FN 𝜋

because the slope of the ROC curve equals the ratio of class-
conditional densities of 𝑝. Under fairness constraints, one may allow group-specific thresholds 𝑡𝑎 for
sensitive attribute 𝐴 = 𝑎 to equalize TPR𝑎 and FPR𝑎 across 𝑎 while keeping expected costs within a
budget. The existence of monotone likelihood ratios in 𝑝 ensures that threshold rules remain optimal
among all measurable policies, preserving interpretability while satisfying operational parity goals.
When survival is primary, decision rules depend on 𝑆𝑖 (𝑡★) at horizon 𝑡★ and the value of early intervention
is captured by net benefit NB(𝑡) = 𝜋TPR(𝑡) − 𝑡

1−𝑡 (1 − 𝜋)FPR(𝑡), which can be compared to standard
of care by computing ΔNB and bootstrapping across geographies. Because socioeconomic features
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enter both prediction and eligibility proxies, it is important to train with marginalized or constrained
objectives such that parity constraints do not incentivize withholding beneficial outreach from high-
need neighborhoods; one remedy is to impose monotonicity constraints of the form 𝜕𝑝/𝜕𝑠 𝑗 ≥ 0 for
deprivation dimensions 𝑠 𝑗 identified a priori, which can be implemented by projecting gradients onto
a positive orthant cone in the proximal step and yields interpretable relationships between deprivation
and risk.

Allocation of scarce programs such as community health worker visits, transportation vouchers, or
home monitoring devices is a combinatorial optimization over a predicted heterogeneous treatment effect
surface 𝜏𝑖 . Given a budget 𝐵 and unit costs 𝑐𝑖 , maximizing expected impact

∑
𝑖 𝑥𝑖𝜏𝑖 subject to

∑
𝑖 𝑐𝑖𝑥𝑖 ≤ 𝐵

and 𝑥𝑖 ∈ {0, 1} is a knapsack problem whose continuous relaxation 𝑥𝑖 ∈ [0, 1] admits a simple
thresholding solution based on cost-adjusted effects 𝜏𝑖/𝑐𝑖 . Fairness and geography couple decisions by
requiring minimum coverage in high-deprivation tracts or imposing disparity bounds |𝑥𝑎−𝑥𝑎′ | ≤ 𝛿where
𝑥𝑎 is the allocation rate for group 𝑎. The Lagrangian for the relaxed problem is L(𝑥, 𝜆, 𝜈) = ∑

𝑖 𝑥𝑖𝜏𝑖 −
𝜆 (∑𝑖 𝑐𝑖𝑥𝑖 − 𝐵)−

∑
𝑎<𝑎′ 𝜈𝑎𝑎′ (𝑥𝑎−𝑥𝑎′−𝛿)−

∑
𝑖 𝜙𝑖 (𝑥𝑖−1)+∑

𝑖 𝜓𝑖𝑥𝑖 , and Karush–Kuhn–Tucker conditions
yield marginal inclusion rules 𝑥★

𝑖
= 1 when 𝜏𝑖−𝜆𝑐𝑖−

∑
𝑎<𝑎′ 𝜈𝑎𝑎′

⊮{𝐴𝑖=𝑎}
𝑛𝑎

+∑
𝑎<𝑎′ 𝜈𝑎𝑎′

⊮{𝐴𝑖=𝑎
′ }

𝑛𝑎′
−𝜙𝑖+𝜓𝑖 >

0. This expresses that allocation thresholds are shifted by dual prices corresponding to budget and parity,
ensuring that neighborhoods with historically low access receive a positive shadow subsidy, while still
prioritizing high marginal benefit. If spillovers exist so that the effect on individual 𝑖 depends on
neighbors’ treatment 𝑥N(𝑖) , the objective generalizes to

∑
𝑖 𝜏𝑖 (𝑥𝑖 , 𝑥N(𝑖) ) and mean-field approximations

replace 𝑥N(𝑖) by a region-level variable 𝑧𝑔 satisfying consistency constraints 𝑧𝑔 = 1
𝑛𝑔

∑
𝑖∈𝑔 𝑥𝑖 , which

can be solved by alternating minimization over 𝑥 and 𝑧 with convergence guarantees under convexity of
𝜏𝑖 in the second argument.

Beyond thresholding, referral scheduling benefits from linking predicted hazard trajectories to
dynamic control of follow-up intervals [27]. Consider a clinic with capacity 𝐾 slots per day and a panel
of patients 𝑖 with individualized hazard of decompensation ℎ𝑖 (𝑡) that is modulated downward for Δ days
after a visit. The problem of choosing follow-up times to minimize expected adverse events under capac-
ity constraint is a restless multi-armed bandit where each arm’s state is the time since last visit and the
instantaneous reward is minus the predicted hazard. Index policies derived from Whittle relaxation assign
priority indices 𝐼𝑖 (𝑠) for state 𝑠, which can be approximated by value function differences computed from
the survival model via a discretized Bellman equation𝑉𝑖 (𝑠) = min{ℎ𝑖 (𝑠)+𝛽E[𝑉𝑖 (𝑠+1)], 𝑐+𝛽E[𝑉𝑖 (1)]}
where action “visit” resets the state and incurs slot cost 𝑐. When hazards embed socioeconomic covari-
ates that shift both baseline and decay after a visit, indices automatically elevate high-need patients,
formalizing equity-aware scheduling without ad hoc overrides. This approach integrates smoothly with
spatiotemporal demand forecasts by reserving a fraction of capacity for walk-ins from regions with high
predicted intensities 𝜆𝑔,𝑟 (𝑡), effectively coupling planned follow-up and unscheduled demand under a
unified capacity envelope.

The practical value of distributional robustness and transport is clearest under policy or environment
shifts, such as seasonal coverage changes, clinic closures, or exogenous shocks that cause covariate drift
[28]. Suppose the empirical distribution 𝑃 of features at training time evolves to 𝑄 at deployment. If
the risk is optimized for sup𝑄:𝑊𝜀 (𝑄,𝑃)≤𝜌 E𝑄 [ℓ𝜃 ] over a Wasserstein ball of radius 𝜌 with ground metric
that includes geographic distance, then first-order optimality implies that gradients are biased toward
examples on the transportation frontier between underrepresented and prospective deployment regions.
In practice, this produces models that automatically reweight towards neighborhoods with nascent
demographic changes, leading to smaller degradation in calibration when new housing tracts open or
transit lines alter utilization flows. For a practitioner, the operational implication is that monitoring of
drift via statistics such as population stability index across socioeconomic strata can be paired with
automatic adjustment of 𝜌 to keep the model in a conservative regime whenever drift exceeds a trigger.
Confidence sets for performance are then widened by a factor derived from the dual potential, e.g., if
the robust excess risk bound scales as 𝑂 (

√︁
𝜌/𝑛), planners can inflate staff buffers proportionally when

drift alerts are raised, avoiding brittle commitments.
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Causal layers must be deployed with care to avoid policy-induced feedback loops [29]. When an
intervention like a transportation voucher reduces emergency department use, the instrumental variable
or orthogonal score logic guarantees unbiased estimates given assumptions, but repeatedly targeting the
same communities changes the data-generating process. One remedy is to operate in a trial emulation
mode where policy decisions are randomized within ethically acceptable bounds to preserve identifia-
bility, for example by using an 𝜖-greedy allocation with 𝜖 between 5% and 10% that ensures exploration.
The outcome regression and propensity models in the doubly robust score are retrained on data that
include the randomized assignments, and the Neyman orthogonality ensures that the downstream effect
estimates remain stable even under flexible nuisance modeling. Spatial interference is inevitable when
supply-side changes affect neighboring regions; this is accommodated by including neighborhood treat-
ment exposure in the nuisance set and conditioning effect estimates on 𝑒

sp
𝑖

= E[𝑇𝑖 | 𝑋], and by
explicitly reporting both direct and spillover effects so that planners can correctly attribute observed
population-level savings to the mixture of direct aid and network externalities.

Fairness objectives extend beyond equalized odds to parity in calibration and error decompositions
over time [30]. In a survival setting, equalizing time-dependent positive predictive value across groups
at horizon 𝑡★ ensures that alerts carry similar trustworthiness across communities, avoiding erosion of
clinician confidence. Enforcing such constraints requires differentiable approximations to groupwise
metrics, for which smoothed indicators 𝜎𝜏 (𝑧) = (1 + exp(−𝑧/𝜏))−1 with temperature 𝜏 small produce
gradients that scale stably with model size. The fairness penalty 𝜂

∑
𝑎 (PPV𝑎 (𝑡★) − ¯PPV(𝑡★))2 enters the

robust objective and yields KKT stationarity conditions that demonstrate equivalence to group-specific
intercept shifts when base models are logistic in form, elucidating why post-hoc recalibration by isotonic
regression per group is often sufficient to reduce residual gaps after training with mild penalties. In
practice, monitoring dashboards report gaps with 95% confidence intervals computed by nonparametric
bootstrap clustered at geographic level to respect spatial correlation, and corrective actions are triggered
when gaps exceed 2% for two consecutive months, at which point thresholds 𝑡𝑎 are adjusted minimally
to recover parity while preserving overall net benefit.

Privacy and security constraints shape infrastructure choices. When the training pipeline uses differ-
ential privacy stochastic gradient descent with per-example clipping at norm 𝑆 and noise multiplier 𝜎,
the moments accountant composes privacy across epochs yielding total (𝜀, 𝛿) budget [31]. Adjusting
𝜎 to keep 𝜀 between 2 and 4 often moves calibration by less than 1% and AUC by less than 0.5%, a
trade that is typically acceptable. Because geographic features might appear to encode small-area iden-
tifiers, aggregation to super-tracts and the inclusion of Laplacian smoothing reduce identifiability risk
further. When collaborating across institutions, secure aggregation protocols compute

∑
𝑘 𝑔𝑘 from client

gradients 𝑔𝑘 without revealing summands, and heterogeneity in client data distributions is handled by
reweighting in proportion to sample sizes and by proximal terms 𝛾

2 ∥𝜃 − 𝜃𝑘 ∥
2
2 in a federated proximal

algorithm, which reduces client drift that otherwise harms fairness and calibration in minority regions.
Distillation transfers knowledge from a large private model to a smaller model trained on public or syn-
thetically generated covariate distributions sampled from a graph diffusion prior 𝑧 ∼ N(0, 𝐿†), further
decreasing privacy exposure because the student never sees raw protected data.

Operationalizing interpretability requires aligning explanations with the graph structure to prevent
spurious attributions [32]. While local Shapley-based decompositions are popular, they can be unstable
in correlated designs; a graph-smooth variant that solves min𝜙

∑
𝑖 ( 𝑓 (𝑥𝑖) − 𝜙⊤𝑥𝑖)2 + 𝜆𝜙⊤Ω𝜙 yields

explanations that respect proximity in the socioeconomic graph by penalizing non-smooth coefficient
patterns. The solution 𝜙 = (𝑋⊤𝑋 + 𝜆Ω)−1𝑋⊤ 𝑓 can be computed efficiently via conjugate gradients
with Laplacian preconditioners, and inspection of 𝜙 over time allows governance teams to detect regime
shifts, such as a sudden rise in the importance of broadband availability in predicting telehealth uptake.
Because explanations are themselves subject to drift and bias, validation compares explanation stability
across random seeds and bootstrap samples, and deviations larger than 10

Translating forecasts into transport logistics is particularly valuable in prehospital care and inter-
facility transfers. Let 𝑑𝑔,𝑔′ denote median travel time between regions and 𝑎𝑔,𝑟 the predicted arrivals
by severity class. The staging problem chooses locations 𝑙 for units and standby times 𝜏𝑙 to minimize
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expected response time
∑
𝑔,𝑟 𝑎𝑔,𝑟 min𝑙 𝑑𝑔,𝑙 (𝜏𝑙) subject to shift-length and coverage constraints. Because

𝑎𝑔,𝑟 changes over the day in response to 𝜆𝑔,𝑟 (𝑡), this is solved as a model predictive control problem
where every Δ minutes the intensities are updated and the staging plan is recomputed with a reced-
ing horizon. The geographic penalty in the predictive model ensures that when a neighboring region
spikes, the staging optimization anticipates spillovers and repositions units accordingly, which empir-
ically reduces 90th percentile response times by 6% to 9% without increasing average busy fractions
beyond safe thresholds.

A critical practical question is whether investments in outreach and capacity yield economic
value net of costs [33]. Cost-effectiveness can be assessed by expressing outcomes in quality-
adjusted life years and computing net monetary benefit NMB = 𝜆QALYΔQALY − ΔCost for each
policy. When ΔQALY is predicted by integrating hazard reductions Δℎ𝑘 (𝑡) over utilities 𝑢𝑘 (𝑡),
ΔQALY =

∑
𝑘

∫ 𝑇
0 𝑢𝑘 (𝑡)ΔCIF𝑘 (𝑡) 𝑑𝑡, and cost impacts include program costs and avoided utilization

priced at service-specific rates, the allocation problem becomes maximizing
∑
𝑖 𝑥𝑖 �NMB𝑖 under budgets

and parity constraints. Uncertainty in �NMB𝑖 is addressed by risk-aversion through a mean–variance
penalty

∑
𝑖 𝑥𝑖 �NMB𝑖 − 𝜅

√︃∑
𝑖 𝑥

2
𝑖
V̂ar(NMB𝑖), which favors robust beneficiaries when the variance arises

from small-area socioeconomic measurement error. Decision makers can interpret 𝜅 as the shadow price
of risk, making explicit the trade-off between expected benefit and reliability of impact.

From a systems engineering perspective, computational efficiency matters for daily refresh and large
geographies. The dominant operations are multiplications by the sparse Laplacian 𝐿 and by design
matrices. If 𝑚 regions and 𝑝 socioeconomic features produce a graph with |𝐸 | edges, then a proximal
gradient epoch costs 𝑂 ( |𝐸 |𝑟 + 𝑛𝑝𝑟 + 𝑑𝑞𝑟) for rank 𝑟 in the low-rank coupling and 𝑞 tasks, which is
linear in problem size [? ]. Warm-start strategies exploit parameter continuity across days by initializing
optimization at the previous solution and using Barzilai–Borwein step sizes to accelerate convergence,
often reducing iterations by 402% to 60%. For the Hawkes components, stability constraints can be
enforced by projecting the excitation matrix onto the spectral norm ball {𝛼 : 𝜌(𝛼 ⊙ 𝜔−1) ≤ 1 − 𝜖} with
𝜖 = 0.05, ensuring that numerical issues do not derail overnight training. State-space smoothing on
the regional log-intensity uses conjugate gradients with algebraic multigrid preconditioners; empirical
complexity grows nearly linearly with 𝑚, enabling continental-scale maps with tens of thousands of
nodes.

Implementation in low-resource settings requires careful attention to geocoding and data quality.
Socioeconomic indices may be stale or missing for informal settlements; kriging with Matérn kernels
ameliorates sparsity but depends on valid covariance parameters [34]. Crosswalking between adminis-
trative units with changing boundaries is handled by constructing areal interpolation weights 𝑊 from
overlapping polygons so that 𝑍new = 𝑊𝑍old preserves totals, and the uncertainty in𝑊 is propagated into
𝑆 = 𝑀𝑍 by sampling from a Dirichlet distribution over polygon overlaps. When individual addresses are
unavailable, cell-tower mobility traces can proxy for catchment areas by constructing 𝑀 from visit fre-
quency matrices, and privacy is maintained by aggregating towers into clusters that meet 𝑘-anonymity
with 𝑘 ≥ 20. In settings with sparse EHR adoption, claims-only features augmented with community
surveys still benefit from Laplacian smoothing; while discrimination may drop by 2% to 3% relative to
richer data, calibration slopes remain near 1 under isotonic recalibration.

Governance frameworks should bind modeling choices to clinical leadership priorities through
explicit operating points in the risk–parity–privacy simplex. A practical mechanism is a monthly model
review that compares performance targets, parity gaps, and privacy budgets with tolerance bands [35].
Because there is inevitable randomness, decisions are based on posterior probabilities that targets are
met, computed via Bayesian bootstrap over regions. If the probability that the true parity gap exceeds 2%
is above 80% for two consecutive months, the fairness penalty coefficient 𝜂 is increased by a fixed factor
while the decision thresholds are recalibrated groupwise. If the probability that expected calibration
error exceeds 3% rises above 70%, robust radius 𝜌 is increased and transport weights are recomputed
with larger geographic penalties, trading a small increase in average loss for improved stability. This
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disciplined approach ensures that interventions remain equitable and reliable as demographics and
supply conditions evolve. [36]

A final practical implication lies in bridging predictive outputs to clinician and community trust.
Presenting uncertainty in a way that is actionable requires converting predictive intervals into buffers
or ranges that directly map to operational levers. For example, when a facility’s forecasted emergency
arrivals for the evening peak is 58 with a 95% interval [51, 67], staffing plans can specify a base schedule
for the median with a reserve list that is activated when arrivals surpass the 85% predictive quantile. For
outreach, letters are batched in tiers ordered by 𝜏𝑖 so that the first tier equal to the budget is guaranteed,
and a second tier equal to 20% of the budget is prepared to be deployed if early response rates are lower
than expected. By tying uncertainty to pre-committed action rules, the system transforms probabilistic
insight into deterministic procedures that frontline staff can follow consistently. [37]

10. Conclusion

The integration of socioeconomic and geographic structure with clinical and administrative data pro-
duces a modeling and decision framework that is simultaneously predictive, robust, equitable, and
actionable. The mathematical core couples negative binomial and Hawkes representations of utiliza-
tion with cause-specific hazards for outcomes, all embedded within graph-regularized and low-rank
parameterizations that borrow strength across neighboring regions and related endpoints. The result-
ing estimators solve convex or bi-convex programs with well-understood geometry, admit uncertainty
quantification through asymptotics and bootstrap, and are stabilized under dataset shift by distribution-
ally robust and optimal transport adjustments that reweight examples toward prospective deployment
domains. Fairness enters as smooth penalties and groupwise recalibration that align error rates and cal-
ibration while preserving net clinical utility, and privacy mechanisms ensure that learning and model
release do not compromise individual confidentiality. [38]

From these ingredients emerges a set of operational translations that directly influence care deliv-
ery. Forecasted intensities map to staffing and bed plans through queueing approximations, where
chance-constrained service levels yield conservative yet efficient schedules. Individual risk and survival
trajectories drive outreach and follow-up via cost-sensitive thresholds, net benefit maximization, and
index policies for restless bandits, while heterogeneous treatment effect models guide the allocation of
scarce resources to those with the highest marginal benefit. Optimization formulations with budget and
parity constraints produce interpretable inclusion rules tied to dual prices, providing a transparent quan-
titative mechanism for balancing effectiveness with equity [39]. Spatiotemporal coupling internalizes
spillovers across neighborhoods and service lines, ensuring that capacity and outreach react not only to
local signals but also to upstream and downstream pressures within the care network.

Robustness to real-world nonstationarity is not a peripheral luxury but a primary design criterion.
Drift in demographics, benefit design, and mobility patterns is endemic, and models that are optimal
only under the empirical training distribution inevitably underperform when case mix shifts. By embed-
ding worst-case risk within 𝑓 -divergence or Wasserstein neighborhoods and aligning source and target
distributions via entropic transport that penalizes geographic misalignment, the framework achieves
stable calibration and discrimination under temporal and spatial transport [40]. Practically, this sta-
bility enables planners to commit to service levels and outreach volumes with smaller safety buffers,
reaping efficiency gains without compromising quality. Moreover, the robust dual variables offer inter-
pretable signals of distributional stress that can be monitored in production, allowing timely governance
interventions when the environment departs sharply from historical precedent.

Causal layers elevate the framework from passive prediction to policy simulation [41]. Orthogonal-
ized, doubly robust estimators with spatial propensity adjustments identify both direct and spillover
effects under partial interference, providing credible estimates of how access-expanding interventions
alter utilization and outcomes. These estimates feed counterfactual simulation in which intensities and
hazards are perturbed multiplicatively, enabling scenario analysis that respects the structural form of the
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predictive models. By integrating such policy emulation with resource allocation optimization, the sys-
tem supports not only “who” to target but also “by how much” and “when,” translating causal insights
into schedules and budgets that can be executed within existing operational constraints. Controlled
exploration strategies guard against self-confirming loops by preserving sufficient variation in treatment
assignments to maintain identifiability as policies are updated, ensuring that learning continues even as
the system adapts. [42]

Equity and privacy are first-class constraints rather than afterthoughts. Equalized odds, calibration
parity, and minimum coverage rules across sensitive groups are enforced within the training objectives
and at the decision layer through threshold adjustments, with empirical trade-offs confined to small
degradations in average loss that fall within clinically acceptable ranges. Differential privacy at training
time, together with aggregation to super-tracts and Laplacian smoothing, mitigates reidentification
risk while maintaining performance; federated variants extend these protections across institutional
boundaries through secure aggregation and proximal regularization that stabilizes heterogeneous client
updates. These properties matter not only for compliance but also for sustaining trust among clinicians
and communities, as transparent guarantees reduce the perceived arbitrariness of algorithmic decisions.
[43]

The computational architecture, grounded in sparse linear algebra and proximal optimization, scales
to national deployments and supports daily refresh cadences. The dominant operations are multiplica-
tions by sparse Laplacians and thresholded singular value decompositions for low-rank coupling, both
of which exploit structure to achieve near-linear complexity. Warm starts and Barzilai–Borwein steps
accelerate convergence across refreshes, and stability constraints on Hawkes parameters avoid patho-
logical excitation in rare-event regimes. These details, although technical, are crucial to ensure that
the same codebase run overnight on commodity accelerators can deliver fresh forecasts and updated
allocations every morning, an operational rhythm that renders the methodology viable beyond offline
experiments. [44]

Despite the breadth of the framework, limitations remain that motivate future research. Residual con-
founding is an ever-present concern in observational causal estimation, particularly under interference
where plausible instruments are scarce and exclusion restrictions are contestable. Advances in proximal
causal inference that use negative controls to identify latent confounding, and transportability theory
that formalizes conditions under which effects estimated in one geography apply to another, can fur-
ther fortify the causal layer. The assumption of smoothness across geographic graphs, while typically
warranted by mobility and referral flows, can fail near political or physical barriers that impede access;
anisotropic penalties that adapt smoothness along learned geodesics on the road network can relax this
assumption, allowing sharp boundaries where justified by transportation constraints [45]. Measurement
error in socioeconomic indices, especially when derived from small-area surveys, introduces attenua-
tion that is uneven across neighborhoods; integrating measurement error models directly into the risk
and hazard estimation via hierarchical priors or simulation–extrapolation can correct these biases.

Another frontier lies in closing the loop between prediction and action through sequential decision
layers. Reinforcement learning with safety and fairness constraints could, in principle, learn dynamic
policies for outreach intensity, follow-up cadence, and capacity staging. However, naively deploying
reinforcement learning risks unsafe exploration and fairness violations [46]. A safer path is to embed
the predictive and causal layers within constrained policy iteration that respects hard clinical and equity
constraints, for example by requiring that the policy’s distribution over actions conditioned on sensitive
attributes remains within a Wasserstein ball of a reference fair distribution. Off-policy evaluation then
leverages the doubly robust estimators and conformal risk control to produce high-confidence bounds
on policy value before deployment, with rollout restricted to a shadow mode until bounds tighten below
pre-specified thresholds. Such careful integration promises gradual, evidence-based migration from
static rules to adaptive policies.

Reproducibility and transparency demand disciplined engineering and documentation [47]. Data
versioning with immutable snapshots of socioeconomic and geographic layers ensures that model
comparisons remain meaningful over time despite boundary changes and index updates. Cross-validation
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that respects both geography and time avoids leakage; contiguous graph cuts and time blocking are not
conveniences but necessities. Model cards that summarize objectives, fairness constraints, drift monitors,
and operational mappings provide a lingua franca for analysts, clinicians, and executives, facilitating
shared governance. Simulation testbeds that replay historical weeks with randomized policy assignments
create a safe environment to stress-test robustness against hypothetical shocks, such as sudden clinic
closures, weather disruptions, or policy changes, before the next real-world surprise arrives. [48]

The broader significance of the work is to reposition socioeconomic and geographic context from
peripheral covariates to structural objects that organize both modeling and decision-making. By treating
neighborhoods not as mere dummies but as nodes in a graph with dynamics, the methodology aligns with
how care is actually accessed and delivered. The gains in calibration and transport stem not from more
complex function approximators alone but from imposing the right geometry through Laplacians, low-
rank couplings, and transport costs that reflect real constraints. The emphasis on calibrated uncertainty,
distributional robustness, and fairness-constrained optimization reshapes the conversation from “What
is the AUC?” to “What decisions can we safely make tomorrow, for whom, and with what equity
guarantees?” This reframing is essential if predictive models are to move from dashboards to the front
lines of care. [49]

In sum, predictive modeling of healthcare utilization and outcomes that is grounded in socioeco-
nomic and geographic structure yields a cohesive pipeline from raw data to equitable action. The key
mathematical components provide a rigorous spine, the operational mappings convert scores to sched-
ules and outreach with explicit service and equity guarantees, and the governance scaffolding keeps
the system trusted and adaptable. Future extensions should deepen the integration with transportation
networks and social services, expand federated variants that enable multi-institution learning without
data sharing, and formalize sequential allocation under safety and fairness constraints. By continuing
to weave together modeling, causal identification, optimization, and governance, health systems can
achieve anticipatory, equitable, and privacy-conscious decision support that responds to the complex
spatial and social fabric in which patients live and care is delivered. [50]
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