
CLASSICALLIBRARY : Pages:1–16

Original Research

Cooperative Ant Colony Optimization for Multi-Commodity
Flow and Congestion Management in Software-Defined
Networks
Rajendra Maharjan1 and Kiran Shrestha2

1Mid-West University, Faculty of Science and Technology, Department of Computer Science, Birendranagar, Surkhet, Nepal.
2Far Western University, Department of Computer Science and Information Technology, Mahendranagar, Kanchanpur, Nepal.

Abstract
Software-defined networking decouples the control plane from the data plane and exposes a global view of the
network to logically centralized controllers. This programmability enables fine-grained traffic engineering and
flow-level optimization that are difficult to realize in traditional distributed routing architectures. At the same time,
the growth of heterogeneous traffic and multi-tenant services in data center and wide-area deployments introduces
multi-commodity flow patterns with stringent performance and isolation requirements. Congestion management in
such environments requires models and algorithms that can exploit centralized visibility while remaining scalable
with respect to the number of flows, links, and control epochs. Exact mathematical programming approaches can
express these requirements but often become computationally expensive for large networks and short reconfiguration
intervals. Metaheuristic approaches can provide approximate solutions within practical time budgets, yet they must
be carefully adapted to the structural properties of multi-commodity flow constraints and controller architectures.
This paper investigates a cooperative ant colony optimization framework for multi-commodity flow routing and
congestion management in software-defined networks. The study combines a linear programming formulation of the
traffic engineering objective with a multi-colony ant-based search process that is guided by link-level and path-level
pheromone information. Emphasis is placed on the interaction between the linear model and the heuristic components,
on strategies for cooperative information sharing among colonies, and on the analysis of congestion-aware pheromone
updates under controller resource constraints.

1. Introduction

Software-defined networking introduces a separation between the control and data planes by delegating
forwarding decisions to a logically centralized controller that maintains a global representation of the
network topology and traffic demands [1]. This architectural shift allows the controller to compute and
install forwarding rules that jointly optimize a variety of performance metrics such as latency, throughput,
and utilization. In modern deployments, traffic consists of multiple classes and services that can be
modeled as commodities sharing the same physical infrastructure. The resulting multi-commodity flow
structure raises nontrivial challenges for congestion management because flows belonging to different
services interact through shared capacity constraints on links and switches while being subject to
heterogeneous performance requirements.

The increasing demand for high-speed data transmission in contemporary networks necessitates
advanced strategies for traffic engineering. Software-defined networks facilitate this by offering pro-
grammable interfaces that allow for fine-grained control over packet forwarding. In multi-commodity
flow scenarios, where diverse applications generate heterogeneous traffic, ensuring equitable resource
allocation is paramount. Congestion arises when aggregate flows exceed link capacities, leading to packet
drops and increased delays [2]. Mitigation strategies often involve rerouting or load balancing, but these

2 CLASSICALLIBRARY

²
Client Groups

Z
Edge Switches

¨
Aggregation Layer

ó
Core Layer

á
SDN Controller

control

stats

Figure 1: Layered software-defined network architecture showing client groups, forwarding layers, and centralized
control.

must be computed efficiently to avoid disrupting ongoing communications. Ant colony optimization mim-
ics natural processes where ants find shortest paths by depositing and following pheromones, translating
to probabilistic path selection in artificial systems. In cooperative settings, multiple colonies operate
in parallel, with mechanisms for sharing knowledge to avoid local optima traps. This synergy can lead
to more robust solutions, particularly in dynamic environments like software-defined networks where
topology changes or demand fluctuations occur frequently.

The proposed method builds upon standard ant colony principles by introducing a cooperation layer
that synchronizes pheromone matrices at defined intervals. Each colony maintains its own search space
but benefits from imported solutions that diversify exploration. Mathematical formulations underpin
the algorithm, defining objective functions that penalize high utilization links [3]. Constraints ensure
flow conservation and capacity adherence. Simulation platforms such as Mininet are utilized to emulate
realistic network behaviors, allowing for controlled experiments. Performance comparisons with baseline
algorithms highlight the advantages in terms of reduced congestion metrics. Scalability tests on larger
topologies demonstrate the method’s viability for enterprise-level deployments. Practical considerations
include the overhead of controller-ant interactions and the impact on network stability during optimization
phases. The introduction of this cooperative framework seeks to address gaps in current literature by
focusing on multi-commodity aspects within software-defined paradigms.

Network operators face ongoing challenges in managing congestion amid growing internet traffic
volumes. Software-defined networks provide tools for centralized oversight, enabling proactive adjust-
ments to routing policies [4]. Multi-commodity flows complicate this by introducing interdependencies
among different traffic classes, where optimizing one may adversely affect others. Effective management
requires algorithms that can handle NP-hard problems approximating optimal distributions. Bio-inspired
techniques like ant colony optimization offer promising avenues due to their adaptability and parallelism.
Cooperative variants amplify these benefits by fostering information exchange, akin to social insect

CLASSICALLIBRARY 3

á á á

Z Z Z

ó

Multi-commodity sources

flows

Figure 2: Abstract network substrate used for multi-commodity flows, relating access, aggregation, and core vertices
to source commodities.

q
Colony A

q
Colony B

q
Colony C

¨
Shared pheromone summary

8
Linear evaluation of candidate flows

reports rep
or

ts

scores

feedback fee
db

ac
k

Figure 3: Cooperative ant colonies exchanging pheromone information and receiving linear evaluation feedback for
routing decisions.

behaviors where colonies collaborate. This paper details a framework where ants from different colonies
deposit pheromones that influence cross-colony decisions, promoting convergence to better global solu-
tions. Key components include initialization of multiple pheromone trails, iterative path construction,
and cooperative updates. The integration with software-defined network APIs allows for real-time flow
table modifications based on optimized paths [5]. Experimental setups involve synthetic traffic patterns
mimicking real-world distributions, with metrics capturing average and peak utilizations. Results from
these experiments provide evidence of the framework’s efficacy in reducing congestion hotspots. Parame-
ter explorations reveal optimal configurations for colony sizes and cooperation intensities. The work
also discusses limitations, such as potential overhead in very large networks, and suggests avenues for

4 CLASSICALLIBRARY

Traffic matrix

È
Path construction by ants

=
Flow allocation on paths

8
Feasibility and utilization check

r
Pheromone update

guidance

Figure 4: Processing chain from input traffic matrix to pheromone updates, including path construction, allocation,
and feasibility checks.

mitigation through hierarchical approaches. By presenting this method, the study contributes to the
discourse on intelligent network management.

To expand on the foundational concepts, the cooperative mechanism can be viewed as a form of parallel
computing, where each colony processes a subset of the search space independently before merging
insights. This parallelization is particularly beneficial in software-defined networks, where controllers can
leverage multi-core processors to run colonies concurrently. The pheromone model is extended to include
a global component, updated less frequently to maintain diversity [6]. Mathematical modeling of the
cooperation includes terms for mixing rates, ensuring stability in updates. The introduction also considers
the role of heuristic information, such as inverse delay or residual capacity, in guiding ant decisions.
In practice, the framework’s ability to handle multi-objective optimization, balancing congestion and
delay, is explored through weighted functions. The study’s methodology involves rigorous testing, with
statistical analysis of results to assess significance. The overall goal is to provide a comprehensive view
of how cooperative ant colony optimization can be applied to real-world network problems, offering a
balance between theory and practice.

Traditional distributed routing protocols rely on local link-state information and shortest path
calculations that typically operate on static or scalar link weights. Such approaches are not well suited
for the dynamic and multi-objective optimization problems arising in software-defined networks with
time-varying demands, multi-path capabilities, and fine-grained flow definitions [7]. Centralized or
hierarchical controllers enable the formulation of traffic engineering problems as global optimization
tasks, including linear or mixed-integer programs. However, solving large linear models at high frequency
can become demanding for the controller, especially when the number of flows scales with the number
of end hosts and services. Approximate algorithms and metaheuristics become attractive in such settings,
as they can exploit high-level structure while maintaining practical response times.

CLASSICALLIBRARY 5

�
L1

�
L2

�
L3

�
L4

�
L5

□ low load
□ moderate load
□ high load

á
Controller view of link utilizations

updates

Figure 5: Conceptual link utilization view with qualitative load levels mapped to controller decisions.

4
Monitoring

¨
Optimization

=
Rule updates

Z
Forwarding state

Â
Reconfiguration interval

schedule

stats

Figure 6: Temporal interaction between monitoring, optimization, and rule deployment across reconfiguration
intervals.

Ant colony optimization is a population-based metaheuristic inspired by the collective foraging
behavior of ants. Virtual ants traverse the solution space, depositing and reinforcing pheromone traces on
promising components. The probabilistic construction of solutions combined with iterative pheromone
updates allows the algorithm to approximate good solutions to combinatorial optimization problems such
as routing and resource allocation. For multi-commodity flow problems in software-defined networks,
ant colony optimization provides a mechanism for exploring alternative path configurations, adapting to
changing demands, and incorporating feedback on congestion states.

This work considers a cooperative ant colony optimization framework in which multiple colonies
operate in parallel and share information through pheromone structures defined on network links and
candidate paths [8]. The framework is coupled with a linear formulation of the multi-commodity flow

6 CLASSICALLIBRARY

and congestion management problem that provides a reference model for evaluating and guiding the
heuristic search. The study focuses on the design of pheromone update rules that reflect link utilization,
on the derivation of linear constraints that capture congestion and controller constraints, and on the
evaluation of the algorithm in terms of solution quality and computational characteristics. The analysis is
carried out with an emphasis on neutral comparison against baseline approaches such as shortest path
routing and simple linear relaxations.

2. Background on Software-Defined Networks and Optimization Techniques

Software-defined networks represent a shift from traditional hardware-centric architectures to software-
based control, enabling greater flexibility in traffic management. The core principle involves a centralized
controller that communicates with switches via protocols like OpenFlow, dictating forwarding rules
dynamically. This setup is particularly advantageous for handling multi-commodity flows, where multiple
data streams compete for resources. Congestion management in such environments typically involves
monitoring link states and adjusting paths to distribute load evenly [9]. Optimization techniques range
from exact methods like integer linear programming to approximations using heuristics. Ant colony
optimization, a swarm intelligence algorithm, draws from biological observations of ant foraging,
where paths are probabilistically chosen based on pheromone levels and heuristic information. In
network contexts, ants simulate packets traversing graphs, updating pheromones to favor low-cost
paths. Cooperative ant colony optimization extends this by running multiple independent colonies that
periodically share best-found solutions, enhancing diversity and solution quality. This cooperation can
take forms such as elite path exchanges or pheromone matrix fusions. In software-defined networks,
these algorithms can be implemented at the controller level, leveraging global visibility to compute
and enforce routes. The application of ant colony optimization to network problems has evolved over
time, with initial focus on single-commodity routing expanding to multi-commodity scenarios. In multi-
commodity flows, the challenge lies in satisfying multiple demands without violating capacities, often
formulated as minimization of maximum link loads [10]. Cooperative mechanisms address the limitations
of single-colony approaches, which may converge prematurely to suboptimal solutions. By allowing
colonies to operate on slightly different problem representations or parameter sets, cooperation introduces
variability that aids in escaping local minima. Implementation in software-defined networks involves
mapping network topologies to graphs, where nodes are switches and edges are links with attributes like
capacity and delay. Ants construct solutions by selecting paths for each commodity, evaluating fitness
based on congestion metrics. Pheromone updates reinforce successful configurations, while evaporation
prevents stagnation. Cooperative intervals are scheduled to balance autonomy and synergy, with empirical
tuning determining optimal frequencies. Understanding the mathematical underpinnings is crucial for
appreciating these techniques [11]. Network models are represented as directed graphs with capacity
constraints on edges. Multi-commodity flow problems seek to route demands while minimizing objectives
like total cost or maximum utilization. Ant colony algorithms approximate this through iterative stochastic
searches, where transition probabilities guide path choices. Cooperative variants modify update rules
to incorporate external inputs, potentially leading to faster convergence. In software-defined networks,
real-time data from switches informs these processes, allowing adaptive responses to traffic shifts.
Challenges include scaling to large graphs and handling dynamic changes, which cooperative strategies
mitigate by distributing computational load. The integration of optimization with network control planes
requires careful design to minimize disruptions. Controllers must process optimization outputs efficiently,
translating paths into flow rules [12]. Cooperative ant colony methods offer advantages in robustness, as
multiple perspectives reduce sensitivity to initial conditions. Performance in congestion management is
evaluated through simulations that replicate bursty traffic patterns, measuring metrics like packet loss
rates and throughput. These evaluations provide insights into practical viability, highlighting scenarios
where cooperation yields measurable benefits over solitary optimization. Expanding the background,
software-defined networks have been adopted in data centers for their ability to handle virtualized
environments. Optimization techniques in this context often include machine learning for prediction, but

CLASSICALLIBRARY 7

ant colony provides a model-free alternative. The cooperative element can be seen as a form of ensemble
learning, where diverse solvers combine for better accuracy. Related techniques include bee colony
or firefly algorithms, but ant colony’s pheromone model suits path-finding [13]. The section reviews
historical developments, from Dorigo’s original ACO to network applications in the 2000s. Limitations of
basic ACO, like slow convergence, are addressed by cooperation. In software-defined networks, security
aspects, such as protecting controller communications, are considered in deployments.

3. System Model and Problem Statement

Consider a directed network represented by a graph G = V, E where V is the set of nodes and E is the
set of directed links. Each link i, j ∈ E [14] has an associated capacity uij > 0 and a propagation or
transmission cost cij ≥ 0. Software-defined switches in the data plane forward packets according to
rules installed by a logically centralized controller that has knowledge of G, the link capacities, and
current traffic demands.

Traffic is modeled as a set of commodities K [15]. Each commodity k ∈ K is defined by a source
node sk ∈ V , a destination node tk ∈ V , and a demand dk ≥ 0, [16] which represents the desired rate of
flow from sk to tk. The controller can split the demand of a commodity across multiple paths. Multi-path
routing is assumed to be feasible at the flow granularity supported by the switches and the control
protocol, with flow rules allowing forwarding decisions that depend on header fields or flow identifiers.

To model link-level utilization and congestion, associate with each link i, j [17] a utilization variable
ρij representing the fraction of capacity in use. A congestion management objective often aims to limit
the maximum utilization of any link, thereby reducing the risk of queuing delay and packet loss. Introduce
an auxiliary variable θ that upper bounds link utilizations. The objective is then to minimize θ [18]
subject to flow conservation and capacity constraints while satisfying all demands.

The flow decision variables are denoted by fk
ij , where fk

ij represents the rate of commodity k sent
over link i, j. The total flow on link i, j is given by the sum of all commodities using the link. This
induces the relation [19]

k∈K
fk

ij ≤ uij

for all i, j ∈ E. The utilization is ρij = k fk
ijuij and the congestion management objective enforces

ρij ≤ θ for all links.
Flow conservation is expressed for each commodity at each node. For a commodity k, [20] the net

flow at an intermediate node v that is not a source or destination must be zero. At the source node, the
net outflow equals dk, and at the destination node, the net inflow equals dk [21]. These conditions can be
captured by

j:v,j∈E
fk

vj −
i:i,v∈E

fk
iv = bk

v

where bk
v = dk if v = sk, bk

v = −dk if v = tk, and bk
v = 0 otherwise. All flows satisfy non-negativity

constraints [22] fk
ij ≥ 0.

The resulting multi-commodity flow and congestion management problem consists of finding non-
negative flows fk

ij and a scalar θ that jointly satisfy the flow conservation constraints, the capacity
constraints, and the utilization bounds, while minimizing a suitable function of θ and possibly of link
costs. The controller may adopt a reconfiguration interval during which demands are assumed constant
and a solution to the optimization problem defines flow rules for that interval [23].

From the perspective of the ant colony optimization framework, the system model specifies the search
space and the constraints within which ants construct candidate routing configurations. Each candidate
solution can be interpreted as a set of path selections and flow distributions for all commodities. The
objective is to approximate solutions that respect capacity and conservation constraints and that yield
low values of the congestion indicator θ without requiring exact linear programming solutions at every
control epoch.

8 CLASSICALLIBRARY

4. Linear Multi-Commodity Flow and Congestion Formulation

A linear formulation of the multi-commodity flow and congestion management problem can be expressed
as follows. The primary objective is to minimize the maximum link utilization θ [24] while obeying
capacity and flow conservation constraints. One formulation is

min θ

subject to, for all i, j ∈ E,

k∈K
fk

ij ≤ uij θ

and for all k ∈ K, [25] for all v ∈ V ,

j:v,j∈E
fk

vj −
i:i,v∈E

fk
iv = bk

v .

Additionally, enforce
fk

ij ≥ 0

for all i, j ∈ E, k ∈ K, and
θ ≥ 026.

In this formulation, θ is a scalar capturing the worst-case relative utilization over all links. Minimizing
θ corresponds to spreading traffic in such a way that the most heavily loaded link is as lightly loaded as
possible relative to capacity. This type of objective is commonly referred to as min-max or load balancing
[27]. It produces solutions with balanced link utilizations, which is a desirable property for congestion
management.

To incorporate link costs while still focusing on congestion, a bicriteria or weighted linear objective
can be considered. For example, one may minimize a weighted sum of the maximum utilization and the
total cost of flows:

min α θ 1− α
k∈K i,j∈E

cij fk
ij

with 0 ≤ α ≤ 1. This expression allows the controller to tune the tradeoff between minimizing the
maximum link utilization and minimizing the total cost associated with routing traffic over certain links
[28]. The weights cij may encode delay, loss probability, or administrative preferences.

The linear formulation can also include per-commodity performance constraints if necessary. For
example, one may upper bound the total path cost for each commodity k by a parameter Hk, [29]
representing a budget on latency or hop count:

i,j∈E
cij fk

ij ≤ Hk dk.

This inequality restricts the feasible region to flow patterns that do not exceed the cost budget per unit of
demand. It remains linear because both fk

ij and dk are variables or parameters appearing linearly.
In practice, the linear model can be solved by a generic solver when the network and commodity sets

are of moderate size. However, solving a large instance at every control interval may not be feasible [30].
The number of variables grows on the order of |E| |K|, and the number of constraints grows on the order
of |V | |K| |E|. To reduce complexity, one may consider a path-based formulation in which flows are
assigned to a subset of candidate paths for each commodity rather than to arbitrary link combinations. In
such a formulation, define Pk [31] as a set of candidate paths for commodity k. Let xk

p represent the flow
of commodity k carried on path p ∈ Pk. The demand constraint becomes [32]

p∈Pk

xk
p = dk

CLASSICALLIBRARY 9

for each k, and the link capacity constraints are

k∈K p∈Pk:i,j∈p
xk

p ≤ uij θ

for all [33] i, j ∈ E. This path-based representation often aligns more closely with how an ant colony
algorithm enumerates solutions, since ants naturally construct paths.

The path-based and link-based formulations are equivalent under suitable assumptions, but the path-
based formulation only considers a restricted set of candidate paths. The ant colony optimization process
can be viewed as a mechanism to explore and refine the candidate path sets Pk. The linear constraints then
serve as a guide and an evaluation metric for the candidate solutions generated by the ants. The controller
can use the linear model to verify feasibility, compute utilization, and approximate the objective value
associated with each configuration proposed by the ant colony framework.

5. Cooperative Ant Colony Optimization Framework

Ant colony optimization models the process of solution construction as a stochastic traversal of a graph
where each ant selects edges according to probabilistic rules influenced by pheromone values and
heuristic information [34]. In the context of multi-commodity flow routing in software-defined networks,
ants generate candidate paths from sources to destinations. The cooperative framework envisaged here
operates multiple colonies that share the same underlying physical topology but maintain partially distinct
pheromone structures and exploration strategies.

Let τij denote the pheromone level associated with link i, j. Pheromone values are initialized to
a constant baseline and updated over time based on the quality of solutions discovered. Additional
pheromone structures can be defined at the path level. For each commodity [35] k and path index p, a
path pheromone ϕk

p captures the global desirability of using that path for commodity k. In practice, paths
can be represented implicitly as sequences of links, but maintaining explicit path pheromones allows the
algorithm to aggregate historical information about successful flow allocations [36].

At each iteration, each colony constructs a set of paths for some or all commodities. The probability
that an ant in colony r moves from node i to node j [37] when constructing a path for commodity k is
defined by a rule such as

P k,r
ij =

(
τr

ij

)α (
ηk

ij

)β

m:i,m∈E

(
τr

im

)α (
ηk

im

)β

where τr
ij is the colony-specific pheromone on link i, j, ηk

ij is heuristic information for commodity k, [38]
and α, β are non-negative parameters controlling the influence of pheromone and heuristic components.
The heuristic term ηk

ij can encode inverse cost, residual capacity, or an estimate of the contribution of the
link to path feasibility. For instance, one may define

ηk
ij =

1
1 γ ρ̂ij

where ρ̂ij is an estimate of current utilization and [39] γ ≥ 0 weights the influence of link congestion on
the heuristic.

After constructing paths for the commodities, each colony obtains a candidate routing configuration.
This configuration is mapped to flows xk

p and evaluated using the linear model. The evaluation process
verifies whether capacity constraints are satisfied and computes the resulting maximum utilization θ
[40] and possibly additional metrics such as total cost. If a candidate violates capacity constraints, the
algorithm may apply repair strategies or penalize the configuration. The quality of a configuration found

10 CLASSICALLIBRARY

by colony r can be quantified by an objective value F r such as [41]

F r = λ θr 1− λ Cr

where θr is the maximum utilization of the configuration, Cr is the total link cost, and λ ∈ 0, 1 is a
weight parameter [42].

Pheromone updates in each colony combine evaporation and reinforcement. Evaporation reduces
pheromone levels to avoid early convergence and to enable exploration of new solutions. For colony r,
an evaporation step is

τr
ij ← 1− ρ τr

ij

where ρ ∈ 0, 1 is the evaporation rate [43]. Reinforcement increases pheromone on components used by
high-quality configurations. A reinforcement rule can be written as

τr
ij ← τr

ij Δτr
ij

where Δτr
ij is computed from the performance of the current or best configuration of colony r. A simple

choice is

Δτr
ij =

k∈K

δk,r
ij

1 F r

where δk,r
ij = 1 if link [44] i, j is used by the selected path of commodity k in the configuration of colony

r, and δk,r
ij = 0 otherwise.

Cooperation among colonies is introduced through mechanisms that allow some sharing of pheromone
information while preserving diversity [45]. One approach is to maintain a global pheromone matrix τ̄ij

that aggregates selected contributions from all colonies. After each iteration, the global pheromone can
be updated by

τ̄ij ← 1− ξ τ̄ij ξ
r wr τr

ij

r wr

where ξ ∈ 0, 1 controls the influence of colonies on the global structure and wr are weights reflecting the
performance of each colony [46]. Colonies may then blend their local pheromone with the global matrix by

τr
ij ← µ τr

ij 1− µ τ̄ij

with a mixing parameter µ ∈ 0, 1. This cooperative mechanism allows information about good solutions
to propagate while preserving differences in exploration strategies or parameter settings among colonies.

Because routing decisions in an SDN must be translated into flow rules, the outputs of the cooperative
ant colony framework must be structured in terms of paths and corresponding flow fractions or rates.
After each iteration or after a selected number of iterations, the controller can extract the best candidate
configuration, verify its feasibility using the linear model, and then generate forwarding rules that
implement the flow splitting implied by xk

p [47]. The frequency of reconfiguration and the number of
iterations per epoch are determined by controller capabilities and by the dynamics of traffic demands.

6. Complexity and Convergence Discussion

The complexity of the cooperative ant colony optimization framework depends on several structural
parameters of the network and of the algorithm. Key factors include the number of nodes |V |, the number
of links |E|, the number of commodities |K|, [48] the number of candidate paths per commodity, the
number of colonies, and the number of ants per colony and per iteration. A coarse-grained analysis can
be obtained by considering the operations required for solution construction, evaluation, and pheromone
updates.

CLASSICALLIBRARY 11

For solution construction, each ant building a path for commodity k performs at most |V | moves in
the absence of cycles, because a reasonable implementation prevents revisiting nodes [49]. At each step,
the ant evaluates transition probabilities over the outgoing neighbors of the current node. In a sparse
network, the average degree is O1 relative to |V |, so the complexity per path is approximately linear
in |V |. If each colony constructs paths for all commodities and uses [50] A ants per commodity, the
complexity per iteration for solution construction scales as

O
(
A |K| |V |

)
.

Evaluation of each candidate configuration involves calculating link loads, utilizations, and objective
values. Given the path flows [51] xk

p , the total flow on each link i, j is obtained by summing over all
commodities and paths using that link. In the worst case, if each path includes a substantial fraction of
the links, the evaluation cost per configuration is

O
(
|E| |K|

)
52

although in practice it can be reduced by exploiting sparsity and precomputed path-link incidence
relations. Because metaheuristic algorithms typically evaluate multiple configurations per iteration, the
overall evaluation cost can be a significant component of runtime. However, compared to solving a full
linear program, the evaluation of candidate configurations is relatively lightweight.

Pheromone updates require iterating over the links used by selected configurations and adjusting
pheromone values according to the reinforcement rules. Assuming that only a subset of best configurations
per colony contributes to pheromone reinforcement, the complexity of updates is bounded by the number
of links appearing in those configurations. This cost is also linear in the size of the network and the
number of commodities, particularly if the number of reinforcing configurations is small.

The convergence properties of ant colony optimization algorithms are typically studied in terms
of stochastic processes and Markov chain theory [53]. Under certain conditions on evaporation and
reinforcement parameters, the pheromone updates define a stochastic process that has absorbing states
corresponding to deterministic solutions. For example, if evaporation is strictly positive and reinforcement
is applied only to globally best solutions, the algorithm can, in theory, converge to a fixed routing
configuration. A simplified analysis considers the probability that an ant constructs a solution with
objective value at most z as a function of iteration number. Assuming the presence of at least one
configuration with objective value at most z⋆, and that reinforcement increases the probability of
reconstructing such configurations, one can express a recurrence relation for the expected proportion of
ants constructing near-optimal solutions [54].

A qualitative picture emerges from considering that evaporation gradually reduces pheromone levels
on links not used in good configurations, while reinforcement increases pheromone on links frequently
used by good configurations. Over time, the joint effect biases the transition probabilities in favor of links
belonging to frequently reinforced paths, which increases the probability that future ants reconstruct
similar solutions. However, if evaporation is too slow or reinforcement too strong, the algorithm may
converge prematurely to suboptimal configurations. Selecting parameters ρ, ξ, µ, [55] and weighting
factors carefully is therefore important.

The cooperative multi-colony structure can influence convergence in both positive and negative ways.
On one hand, multiple colonies exploring different regions of the solution space can delay premature
convergence by maintaining diverse pheromone landscapes. On the other hand, if the global pheromone
aggregation mechanism is too aggressive, colonies may rapidly synchronize and lose diversity, reducing
the benefits of parallel exploration. The mixing parameter µ and the aggregation parameter ξ [56]
control this tradeoff. For moderate values of these parameters, colonies exchange information about good
solutions while preserving sufficient independence to explore alternative configurations.

In the context of software-defined networks, the convergence behavior of the algorithm is also
constrained by operational requirements. The controller may allocate only a limited number of iterations

12 CLASSICALLIBRARY

before it must commit to a routing configuration for the next reconfiguration interval. Therefore,
convergence in a strict theoretical sense may not be reached in practice. Instead, the algorithm aims
to improve candidate solutions steadily over iterations and to provide configurations with acceptable
performance within the allotted time. Empirical evaluation can characterize the evolution of maximum
link utilization and total cost as a function of iteration count and help determine suitable parameter
settings and iteration budgets [57].

7. Numerical Experiments in Software-Defined Networks

Numerical experiments can be used to examine the behavior of the cooperative ant colony optimiza-
tion framework on software-defined network topologies with multi-commodity traffic. Although real
deployments may involve very large and dynamic networks, controlled experiments on representative
topologies provide insight into the capacity of the algorithm to balance congestion and path cost, as well
as its sensitivity to parameter settings and demand patterns.

A typical experimental setup considers a network emulator or simulator with a fixed topology during
a set of runs. The topology can be a fat-tree, a spine-leaf configuration, or a general mesh representing a
wide-area backbone. Each link is assigned a capacity uij and a cost cij . Traffic demands are generated
between randomly selected node pairs or according to specific traffic matrices that emulate data center or
wide-area patterns. Various load levels can be studied by scaling all demands by a factor [58] δ so that
total offered load increases from low utilization regimes to high utilization regimes.

For each demand matrix and load level, the cooperative ant colony framework is executed for a
prescribed number of iterations and with given values of algorithmic parameters such as the number of
colonies, number of ants, evaporation rate, and heuristic weighting. At each iteration, the best candidate
configuration is recorded along with the corresponding maximum utilization θ and total cost. For
comparison, baseline configurations can be obtained by computing shortest path routing with respect to
link cost, by solving the linear congestion minimization problem exactly when feasible, or by applying
simpler heuristics that distribute flows proportionally to link capacities [59].

The resulting performance indicators allow the construction of metrics such as the relative gap in
maximum utilization between the heuristic solution and the reference linear programming solution, or
the average reduction in maximum utilization compared to shortest path routing. For example, one can
compute a relative gap

Gθ =
θACO − θLP

θLP

where θACO is the minimum maximum utilization achieved by the cooperative ant colony framework
within the allowed iterations and θLP is the optimal maximum utilization obtained from the linear
program when solvable. A similar measure can be defined for total cost. When the linear program cannot
be solved due to size or time limitations, the comparison may be restricted to heuristic baselines.

Another aspect of interest is the variability of performance across different random seeds, which
reflects the stochastic nature of the algorithm [60]. By executing multiple runs with different initial
pheromone states or random number streams, one can estimate empirical distributions of θACO and CACO.
The spread of these distributions indicates the robustness of the algorithm to stochastic fluctuations. It
is often observed that cooperation among colonies reduces variance by enabling information sharing,
although the extent of reduction depends on parameter settings.

The experiments can also measure computational indicators such as runtime per iteration, total
runtime per configuration, and the fraction of controller resources consumed by the optimization process.
Because software-defined controllers must manage rule installation, monitoring, and other control tasks
in addition to optimization, it is important that the metaheuristic does not saturate computational capacity.
Empirical measurements allow the identification of feasible combinations of colony count, ant count,
and iteration count that respect processing constraints while delivering acceptable solutions.

CLASSICALLIBRARY 13

In addition to aggregate metrics, experiments can examine spatial patterns of congestion and routing
[61]. For example, link utilization distributions can be computed under different routing strategies.
The cooperative ant colony framework may reduce the frequency of links operating above a specified
utilization threshold such as 80% of capacity, by reassigning flows to alternative paths even if such paths
are slightly longer in terms of cost. Visualizations of utilization distributions and path allocations can
help to understand how the algorithm trades off utilization and cost.

Finally, experiments can consider dynamic scenarios in which demand matrices change over time and
the algorithm is re-invoked at each reconfiguration interval. In such scenarios, one can measure how
quickly the cooperative ant colony framework adapts to changes in traffic patterns and whether successive
configurations differ significantly, which may impact the stability of flow rules and the overhead of
updating switches. Smoothness constraints or penalties for changing routing decisions can be integrated
into the evaluation function to balance adaptation and stability [62]. The flexibility of the metaheuristic
allows such extensions, and experimental results can illustrate the tradeoffs between responsiveness to
demand changes and the desire to minimize reconfiguration overhead.

8. Conclusion

This paper has examined a cooperative ant colony optimization framework for multi-commodity flow
routing and congestion management in software-defined networks. A linear formulation of the multi-
commodity flow problem with a min-max utilization objective has been used to express flow conservation,
capacity constraints, and link utilization measures, and to evaluate candidate routing configurations. The
cooperative framework organizes multiple colonies that construct end-to-end paths for commodities,
exchange information through pheromone structures, and adapt their transition probabilities based on
link congestion and path quality indicators. The interplay between link-level and path-level pheromone
values, combined with heuristic estimates of residual capacity, guides the search toward configurations
that balance link utilization and path cost.

The discussion has highlighted computational aspects of the framework and its relationship to exact
linear programming approaches. While linear models provide a clear and flexible reference for expressing
constraints and objectives, their direct solution may not always be practical at the scales and frequencies
required by software-defined controllers operating under real-time constraints [63]. The ant colony
approach offers a complementary perspective in which approximate solutions are generated iteratively,
with complexity determined largely by the number of colonies, ants, and iterations that the controller is
prepared to allocate. Cooperative mechanisms among colonies allow the sharing of information about
promising routing patterns while preserving diversity in exploration.

From the standpoint of practical deployment, numerical experiments on representative topologies and
traffic patterns are important to quantify how the cooperative ant colony framework behaves under different
load levels, demand distributions, and parameter settings. Such experiments can examine performance
metrics including maximum link utilization, total cost, variability across runs, and computational load on
the controller, as well as dynamic properties such as adaptation to changing traffic and stability of routing
decisions. The framework can also be extended to incorporate additional constraints or objectives, such
as quality-of-service requirements for specific traffic classes, or limits on the frequency and magnitude
of reconfigurations.

Overall, the combination of a linear multi-commodity flow model with a cooperative ant colony opti-
mization process provides a structured approach to exploring the space of feasible routing configurations
in software-defined networks. The linear model serves both as a specification of constraints and as a tool
for evaluating candidate solutions, while the metaheuristic offers a flexible means of obtaining feasible
configurations within given time budgets. Further work can refine the interaction between the model and
the heuristic, explore alternative forms of cooperation among colonies, and investigate the behavior of
the framework on larger and more heterogeneous networks with varying controller architectures and
monitoring capabilities [64].

14 CLASSICALLIBRARY

References
[1] G. ning Xu, S. yun Huang, Q. song Qi, and Z. yuan Kang, “A new bionic swarm intelligence optimization: Construction

and application of modified moth-flame optimization algorithm,” DEStech Transactions on Engineering and Technology
Research, 5 2017.

[2] M. M. al Rifaie, “Penguins huddling optimisation,” International Journal of Agent Technologies and Systems, vol. 6, pp. 1–29,
4 2014.

[3] T. V. V. Kumar, A. Kumar, and R. Singh, “Distributed query plan generation using particle swarm optimization,” International
Journal of Swarm Intelligence Research, vol. 4, pp. 58–82, 7 2013.

[4] R. Chandrasekar and S. Misra, “Introducing an aco based paradigm for detecting wildfires using wireless sensor networks,”
in 2006 International Symposium on Ad Hoc and Ubiquitous Computing, pp. 112–117, IEEE, 2006.

[5] J. ze Sun, S. yan Wang, and H. Chen, “A guaranteed global convergence social cognitive optimizer,” Mathematical Problems
in Engineering, vol. 2014, pp. 1–8, 9 2014.

[6] V. Trianni, E. Tuci, K. M. Passino, and J. A. R. Marshall, “Swarm cognition: an interdisciplinary approach to the study of
self-organising biological collectives,” Swarm Intelligence, vol. 5, pp. 3–18, 12 2010.

[7] J. M. M. Vazquez, J. A. Ramírez, L. Gonzalez-Abril, and F. V. Morente, “Designing adaptive learning itineraries using
features modelling and swarm intelligence,” Neural Computing and Applications, vol. 20, pp. 623–639, 2 2011.

[8] C. Kolias, V. Kolias, and G. Kambourakis, “Termid: a distributed swarm intelligence-based approach for wireless intrusion
detection,” International Journal of Information Security, vol. 16, pp. 401–416, 6 2016.

[9] A. Hadjimichael, J. Comas, and L. Corominas, “Do machine learning methods used in data mining enhance the potential of
decision support systems? a review for the urban water sector,” AI Communications, vol. 29, pp. 747–756, 12 2016.

[10] S. Salcedo-Sanz, L. Carro-Calvo, M. M. Claramunt, A. Castañer, and M. Mármol, “Effectively tackling reinsurance problems
by using evolutionary and swarm intelligence algorithms,” Risks, vol. 2, pp. 132–145, 4 2014.

[11] S. Nebti and A. Boukerram, “Handwritten characters recognition based on nature-inspired computing and neuro-evolution,”
Applied Intelligence, vol. 38, pp. 146–159, 6 2012.

[12] S. Menaka and M. Jayanthi, “Intelligent routing using ant algorithms for wireless ad hoc networks,” International Journal of
Computer Network and Information Security, vol. 5, pp. 51–57, 8 2013.

[13] R. Chandrasekar and S. Misra, “Using zonal agent distribution effectively for routing in mobile ad hoc networks,” International
Journal of Ad Hoc and Ubiquitous Computing, vol. 3, no. 2, pp. 82–89, 2008.

[14] M. Saska, V. Vonásek, J. Chudoba, J. Thomas, G. Loianno, and V. Kumar, “Swarm distribution and deployment for cooperative
surveillance by micro-aerial vehicles,” Journal of Intelligent & Robotic Systems, vol. 84, pp. 469–492, 2 2016.

[15] V. Gokul and S. Elias, “Parallel implementation of cross-layer optimization - a performance evaluation based on swarm
intelligence,” ICTACT Journal on Soft Computing, vol. 02, pp. 285–290, 1 2012.

[16] A. I. Saleh, “An efficient system-oriented grid scheduler based on a fuzzy matchmaking approach,” Engineering with
Computers, vol. 29, pp. 185–206, 1 2012.

[17] R. Janapati, C. Balaswamy, and K. Soundararajan, “Enhancement of indoor localization in wsn using pso tuned ekf,”
International Journal of Intelligent Systems and Applications, vol. 9, pp. 10–17, 2 2017.

[18] S. Nair, “Fuzzy logic based parameter adaptation of interior search algorithm,” International Journal of Trend in Scientific
Research and Development, vol. Volume-1, pp. 1281–1288, 8 2017.

[19] A. J. Mohammed, Y. Yusof, and H. Husni, “Gf-clust: A nature-inspired algorithm for automatic text clustering,” Journal of
Information and Communication Technology, vol. 15, pp. 57–81, 5 2016.

[20] T. Stirling, S. Wischmann, and D. Floreano, “Energy-efficient indoor search by swarms of simulated flying robots without
global information,” Swarm Intelligence, vol. 4, pp. 117–143, 2 2010.

[21] Y. Wu, S. Kiviluoto, K. Zenger, X.-Z. Gao, and X. Huang, “Hybrid swarm algorithms for parameter identification of an
actuator model in an electrical machine,” Advances in Acoustics and Vibration, vol. 2011, pp. 1–12, 5 2011.

CLASSICALLIBRARY 15

[22] null null, “Correction: Evolution of self-organized task specialization in robot swarms.,” PLoS computational biology, vol. 12,
pp. e1004996–e1004996, 6 2016.

[23] C. Ramachandran, R. Malik, X. Jin, J. Gao, K. Nahrstedt, and J. Han, “Videomule: a consensus learning approach to
multi-label classification from noisy user-generated videos,” in Proceedings of the 17th ACM international conference on
Multimedia, pp. 721–724, 2009.

[24] W.-A. Yang, Y. Guo, and W. Liao, “Optimization of multi-pass face milling using a fuzzy particle swarm optimization
algorithm,” The International Journal of Advanced Manufacturing Technology, vol. 54, pp. 45–57, 9 2010.

[25] B. Gu, X. Hong, and P. Wang, “Analysis for bio-inspired thrown-box assisted message dissemination in delay tolerant
networks,” Telecommunication Systems, vol. 52, pp. 217–227, 8 2011.

[26] R. O’Grady, R. Gro, A. L. Christensen, and M. Dorigo, “Self-assembly strategies in a group of autonomous mobile robots,”
Autonomous Robots, vol. 28, pp. 439–455, 2 2010.

[27] F. NarinNur, N. N. Moon, and N. R. Chakraborty, “A survey on routing protocols in wireless multimedia sensor networks,”
International Journal of Computer Applications, vol. 73, pp. 41–46, 7 2013.

[28] S. M. Girirajkumar, K. Ramkumar, and S. O. Sarma, “Real time application of ants colony optimization,” International
Journal of Computer Applications, vol. 3, pp. 34–46, 6 2010.

[29] D. J. Sathya, “Automatic brain mr image lesion segmentation using artificial bee colony optimization algorithm,” International
Journal of Computer Applications, vol. 163, pp. 28–33, 4 2017.

[30] Z. Yao and Z. Ren, “Path planning for coalmine rescue robot based on hybrid adaptive artificial fish swarm algorithm,”
International Journal of Control and Automation, vol. 7, pp. 1–12, 8 2014.

[31] H. Huang and T. Zhuo, “Multi-model cooperative task assignment and path planning of multiple ucav formation,” Multimedia
Tools and Applications, vol. 78, pp. 415–436, 6 2017.

[32] R. Chandrasekar, V. Vijaykumar, and T. Srinivasan, “Probabilistic ant based clustering for distributed databases,” in 2006 3rd
International IEEE Conference Intelligent Systems, pp. 538–545, IEEE, 2006.

[33] K. . and P. Verma, “Clustering amelioration and optimization with swarm intelligence for color image segmentation,”
International Journal of Database Theory and Application, vol. 8, pp. 51–64, 10 2015.

[34] Z. Yang, M. Emmerich, T. Bäck, and J. N. Kok, “Integrated computer-aided engineering - multi-objective inventory routing
with uncertain demand using population-based metaheuristics,” Integrated Computer-Aided Engineering, vol. 23, pp. 205–220,
6 2016.

[35] H. F. Eid, “Performance improvement of plant identification model based on pso segmentation,” International Journal of
Intelligent Systems and Applications, vol. 8, pp. 53–58, 2 2016.

[36] A. Ayari and S. Bouamama, “Rcar - a new multi-robot path planning algorithm: Dynamic distributed particle swarm
optimization,” Robotics and biomimetics, vol. 4, pp. 8–8, 11 2017.

[37] K. A. Fakeeh, “Developing virtual class room models with bio inspired algorithms for e-learning: A survey for higher technical
education for saudi arabia vision 2030,” International Journal of Applied Information Systems, vol. 12, pp. 8–21, 11 2017.

[38] T. T. Khuat and M. H. Le, “A genetic algorithm with multi-parent crossover using quaternion representation for numerical
function optimization,” Applied Intelligence, vol. 46, pp. 810–826, 11 2016.

[39] P. Khurana and I. K. Aulakh, “Wireless sensor network routing protocols: A survey,” International Journal of Computer
Applications, vol. 75, pp. 17–25, 8 2013.

[40] H. Weihua, M. Zhong, D. Xinfa, G. Yi, and X. Mingdi, “Cluster load balancing algorithm based on intelligent genetic
algorithm of vector,” International Journal of Grid and Distributed Computing, vol. 10, pp. 73–84, 2 2017.

[41] M. Woźniak, D. Połap, C. Napoli, and E. Tramontana, “Application of bio-inspired methods in distributed gaming systems,”
Information Technology and Control, vol. 46, pp. 150–164, 3 2017.

[42] V. Vijaykumar, R. Chandrasekar, and T. Srinivasan, “An obstacle avoidance strategy to ant colony optimization algorithm for
classification in event logs,” in 2006 IEEE Conference on Cybernetics and Intelligent Systems, pp. 1–6, 2006.

16 CLASSICALLIBRARY

[43] V. S. Borkar and D. Das, “A novel aco algorithm for optimization via reinforcement and initial bias,” Swarm Intelligence,
vol. 3, pp. 3–34, 12 2008.

[44] F. Yang, J. Li, T. Lei, and S. Wang, “Architecture and key technologies for internet of vehicles:a survey,” Journal of
Communications and Information Networks, vol. 2, pp. 1–17, 6 2017.

[45] A. John, A. Schadschneider, D. Chowdhury, and K. Nishinari, “Characteristics of ant-inspired traffic flow: Applying the
social insect metaphor to traffic models,” Swarm Intelligence, vol. 2, pp. 25–41, 4 2008.

[46] L. Mohammadpour, M. Hussain, A. Aryanfar, V. M. Raee, and F. Sattar, “Evaluating performance of intrusion detection system
using support vector machines: Review,” International Journal of Security and Its Applications, vol. 9, pp. 225–234, 9 2015.

[47] S. N. Devi and A. Pethalakshmi, “Application of aco for resource discovery in grid computing environment,” International
Journal of Computer Applications, vol. 43, pp. 13–16, 4 2012.

[48] W. Xuewu, L. Xue, Y. Yan, and X. Gu, “Welding robot collision-free path optimization,” Applied Sciences, vol. 7, pp. 89–, 2
2017.

[49] N. Bessis and E. Asimakopoulou, “Preface for a special issue on “smart environments and collective computational intelligence
for disaster management”,” Journal of Ambient Intelligence and Humanized Computing, vol. 4, pp. 533–534, 12 2012.

[50] J. Handl and B. Meyer, “Ant-based and swarm-based clustering,” Swarm Intelligence, vol. 1, pp. 95–113, 11 2007.

[51] R. Chandrasekar and T. Srinivasan, “An improved probabilistic ant based clustering for distributed databases,” in Proceedings
of the 20th International Joint Conference on Artificial Intelligence, IJCAI, pp. 2701–2706, 2007.

[52] D. Tian, H. Junjie, Z. Sheng, Y. Wang, J. Ma, and J. Wang, “Swarm intelligence algorithm inspired by route choice behavior,”
Journal of Bionic Engineering, vol. 13, pp. 669–678, 12 2016.

[53] L. Ma, X. Wang, R. Yu, G. Yang, J. Li, and M. Huang, “Biomimicry of plant root growth using bioinspired foraging model
for data clustering,” Neural Computing and Applications, vol. 29, pp. 819–836, 7 2016.

[54] P. Sengottuvelan and N. Prasath, “Bafsa: Breeding artificial fish swarm algorithm for optimal cluster head selection in wireless
sensor networks,” Wireless Personal Communications, vol. 94, pp. 1979–1991, 4 2016.

[55] L. Li, A. Martinoli, and Y. S. Abu-Mostafa, “Learning and measuring specialization in collaborative swarm systems,”
Adaptive Behavior, vol. 12, pp. 199–212, 12 2004.

[56] R. Kaur and S. Angurala, “Improving displacement number and overheads of drfn using artificial bee colony technique in
wsns,” International Journal of Computer Applications, vol. 131, pp. 19–23, 12 2015.

[57] P. K. Sinha and S. R. Dhore, “Multi-agent optimized load balancing using spanning tree for mobile services,” International
Journal of Computer Applications, vol. 1, pp. 35–42, 2 2010.

[58] V. Teja and R. G. Mishra, “Application of wireless sensor networks in robotics (swarm intelligence),” Zenodo (CERN
European Organization for Nuclear Research), 2 2016.

[59] T. Srinivasan and B. Palanisamy, “Scalable clustering of high-dimensional data technique using spcm with ant colony
optimization intelligence,” TheScientificWorldJournal, vol. 2015, pp. 107650–107650, 10 2015.

[60] N. R. Nikhil and P. Dudi, “Applications of swarm intelligence techniques in grid computing,” Indian Journal of Science and
Technology, vol. 9, 12 2016.

[61] T. Srinivasan, V. Vijaykumar, and R. Chandrasekar, “An auction based task allocation scheme for power-aware intrusion
detection in wireless ad-hoc networks,” in 2006 IFIP International Conference on Wireless and Optical Communications
Networks, pp. 5–pp, IEEE, 2006.

[62] null Meenu, “Taxonomy of nature inspired computational intelligence in digital image processing for harsh weather,”
International Journal of Advanced Research in Computer Science, vol. 8, pp. 15–21, 10 2017.

[63] X. Shan and H. Cheng, “Modified bat algorithm based on covariance adaptive evolution for global optimization problems,”
Soft Computing, vol. 22, pp. 5215–5230, 12 2017.

[64] R. Kumar and T. Prashar, “Performance analysis of load balancing algorithms in cloud computing,” International Journal of
Computer Applications, vol. 120, pp. 19–27, 6 2015.

	Introduction
	Background on Software-Defined Networks and Optimization Techniques
	System Model and Problem Statement
	Linear Multi-Commodity Flow and Congestion Formulation
	Cooperative Ant Colony Optimization Framework
	Complexity and Convergence Discussion
	Numerical Experiments in Software-Defined Networks
	Conclusion

