CLASSICALLIBRARY : Pages:1-20

$®

&
. . Dy N
Original Research Fig J

Multi-Region Replication for Feature Pipelines with Latency-
Aware Consistency and Conflict-Free Resolution

Ramesh Bahadur Khadka'! and Sudarshan Pratap Koirala®

! Department of Information Technology, Far Western University, Mahendranagar—Bhasi Road, Kanchanpur 10400, Nepal.
2Department of Computer Applications, Madan Bhandari Memorial College, Bhaktapur-Tokha Road, Kathmandu 44600, Nepal.

Abstract

Modern feature pipelines increasingly operate across multiple cloud regions to reduce tail latency for online infer-
ence, satisfy data residency constraints, and improve availability under regional faults. Replicating feature state
across regions is straightforward when features are immutable or when a single writer exists, but production feature
stores routinely ingest concurrent updates from streaming joins, late-arriving events, backfills, and on-device signals
that can originate in different regions. These realities create a tension between low-latency reads, bounded staleness,
and deterministic conflict handling when updates race or arrive out of order. This paper studies multi-region replica-
tion for feature pipelines under latency-aware consistency objectives and conflict-free resolution requirements. The
central idea is to treat feature values as mergeable state with explicit semantics and to couple replication policies
to end-to-end inference service-level objectives rather than to a single global consistency level. We define a system
model that connects feature freshness to model error through sensitivity estimates, enabling the system to allo-
cate consistency and bandwidth budgets where they matter most. A latency-aware controller selects replication and
read strategies per feature and per workload slice, while conflict-free resolution uses merge operators that preserve
feature meaning across counters, sets, time-series aggregates, and embedding-like vectors. The design integrates
approximate sketches and compression for cost control and exposes reproducible evaluation methodology based
on workload traces and fault injection. The result is an architecture that can deliver predictable tail latency while
keeping inconsistency-induced feature drift measurable, bounded, and operationally auditable.

1. Introduction

Online learning systems depend on feature pipelines that transform raw events into model-ready rep-
resentations for inference and training [1]. In the common split architecture, streaming processors and
batch jobs compute features, a feature store materializes them, and inference services read them at low
latency. As deployment footprints extend to multiple regions, the feature store becomes a distributed,
replicated database whose semantics must match the meaning of features rather than the semantics of
generic key-value registers. A feature value often represents an aggregate over a time window, a dedu-
plicated set of items, a counter with monotonicity expectations, or an embedding-like vector updated by
incremental learning. These values are updated by heterogeneous writers, including stream processors
in different regions, backfill jobs that replay historical data, and user-facing services that attach real-time
signals. The system must tolerate network partitions, variable cross-region latency, and partial failures
while maintaining the operational invariants required for reliable inference [2].

The simplest approach is to impose a single global consistency level, such as linearizability via a con-
sensus group per key, or eventual consistency via asynchronous replication. The former typically incurs
high tail latency and fragile availability under cross-region faults, while the latter can yield arbitrarily
stale reads and nondeterministic outcomes when concurrent updates conflict. Feature pipelines are par-
ticularly sensitive to these trade-offs because the cost of inconsistency is not uniform across features.
Some features are slow-changing and have limited influence on model outputs, while others capture

2 CLASSICALLIBRARY

rapidly varying user intent and strongly affect predictions. Similarly, the latency budget at inference
time is constrained by user experience, and the budget is dominated by p99 or p999 behavior rather than
average latency [3]. A multi-region feature store must therefore mediate a three-way trade-off among

read latency, freshness, and conflict semantics, with explicit knobs that map to model behavior.

Topology Description Typical regions Primary use case

Single-region All feature pipelines and 1 Development, low-
online stores deployed in a traffic tenants
single cluster.

Active—passive Writes in primary region; 2 Disaster recovery,
async replication to warm cost-sensitive work-
standby. loads

Active—active (sync) Coordinated writes across 2-3 High-value, low-
regions with quorum replica- latency-critical
tion. features

Active—active (async) Independent writes with back- 3-5 Global products

ground reconciliation.

with tolerant con-

sistency needs
Hybrid
online/offline fea-
ture pipelines

Hub-and-spoke Central hub for aggregation, 3+
regional spokes for low-

latency reads.

Table 1: Deployment topologies for multi-region feature pipelines.

Mode p95 read latency (ms) Staleness budget Guarantees

Strong global 80-150 <5ms Linearizable reads
across all regions

Bounded staleness 40-80 100 ms Monotonic reads
with time-bound
lag

Session 30-60 250 ms Read-your-writes
within a client ses-
sion

Eventual 2040 2s Convergence with-
out ordering guaran-
tees

Latency-aware hybrid 25-70 Adaptive Per-request trade-

off based on SLO
and region distance

Table 2: Consistency modes and their latency—staleness trade-offs.

This paper proposes a latency-aware replication and consistency framework for feature pipelines
with conflict-free resolution grounded in feature semantics. The approach begins by modeling features
as typed state with merge operators that are associative, commutative, and idempotent when possible,
enabling convergence without coordination. When idempotent merges are not semantically correct, the
system uses deterministic resolution that reduces to a merge on an augmented state space, such as includ-
ing causality metadata, monotone sufficient statistics, or bounded-history summaries. Consistency is not
expressed as a single global guarantee but as per-feature policies that can vary across entities, time, and

CLASSICALLIBRARY 3
Feature class Example features Tolerance to stale- Replication strat-
ness egy
Real-time personaliza- Clickstream embeddings, < 100 ms Strong or
tion recency counters bounded-staleness,
active—active
Risk and fraud Velocity checks, device finger- < 500 ms Strong for writes,
prints session for reads
Aggregated analytics 7-day aggregates, cohort Minutes Async bulk replica-
statistics tion, hub-and-spoke
Experiments and flags Treatment assignment, rollout 1-2's Session consis-
flags tency, cache with
fast invalidations
Offline-derived features Batch-trained embeddings, Hours Daily checkpoint

segment labels

snapshots with lazy
backfill

Table 3: Feature categories and their replication requirements.

Conflict type Detection signal Resolution strategy ~ Notes
Concurrent counter Divergent increments in multi- CRDT grow-only Preserves total
updates ple regions or PN-counter count without coor-
merge dination
Last-writer-wins field Conflicting timestamps for LWW register Drops stale updates
mutable field with clock skew beyond skew thresh-
guardrails old
Set membership Adds/removes from collec- OR-Set CRDT Avoids resurrecting
tions merge removed elements

Idempotent upserts

Duplicate writes with same
idempotency key

Deduplication via
operation log

Guarantees exactly-
once semantics per

key
Schema evolution Mismatched feature schemas Versioned schema Enables rolling
registry with unions upgrades across
regions

Table 4: Conflict types and associated resolution strategies.

workload [?]. Policies are selected by a controller that observes latency distributions, replication lag,
update conflict rates, and sensitivity of model outputs to feature perturbations. The controller enforces
constraints through multi-objective optimization with explicit latency, bandwidth, and energy budgets.

A key requirement is that the system must support both training and inference. Training workflows
often require time travel, reproducibility, and snapshot isolation over feature values aligned with event
time. Inference requires fast reads, often at high QPS, and can tolerate bounded staleness if the induced
error is controlled [4]. Multi-region replication adds complexity because training may run centrally
while inference is distributed, and because backfills can introduce late updates that race with streaming
updates. A conflict-free, semantics-aware representation helps unify these workloads: it permits conver-
gence across regions and simplifies replay and reconstruction, while still supporting fast materialized
reads.

The rest of the paper develops the model, algorithms, and systems mechanisms needed for this
design. We first define a replication architecture for multi-region feature pipelines, including metadata
for causality and feature typing. We then introduce latency-aware consistency control that selects read

4 CLASSICALLIBRARY

Region Traffic pattern Peak QPS Daily feature ingest
(TB)

us-east 70% online / 30% offline 150k 18.2

us-west 60% online / 40% offline 95k 114

eu-central 80% online / 20% offline 110k 13.0

ap-southeast 65% online / 35% offline 75k 9.1

sa-east 50% online / 50% offline 40k 4.7

Table 5: Per-region workload characteristics for the evaluated deployment.

Channel Payload encoding Compression Target one-way
latency (ms)

Control plane RPC JSON over gRPC None < 200

Metadata stream Protobuf LZ4 < 300

Feature deltas Columnar binary Zstd (level 3) < 150

Checkpoint snapshots Parquet files Snappy < 1000

Backfill replays Protobuf Zstd (level 5) Best effort

Table 6: Replication transport configuration for different data channels.

Variant p95 end-to-end latency (ms) Staleness violations (ppm)
Baseline (no routing) 112 940

Latency-only routing 78 510

Staleness-only routing 101 120

Latency-aware hybrid 84 65

Hybrid + local caching 63 72

Table 7: Ablation of latency-aware routing strategies for online inference traffic.

System p95 latency (ms) Cross-region egress (GB/h)
Local-only features 41 0

Naive multi-master 124 215

Global database 97 168

Proposed replication layer 58 89

Proposed + caching tier 46 73

Table 8: Comparison against baseline systems on latency and cross-region traffic.

and replication strategies under tail-latency constraints [5]. Next we define conflict-free resolution mech-
anisms for common feature classes, including numeric aggregates, categorical sets, time-decayed signals,
and embedding-like vectors. We provide optimization formulations and complexity analysis, including
NP-hardness of certain placement and quorum selection problems and practical heuristics. Finally, we
describe performance engineering, storage internals, distributed execution mechanics, and an evaluation
and reproducibility plan that enables auditing of staleness, conflicts, and model impact without relying

on ad hoc assumptions.

CLASSICALLIBRARY 5

Scenario Impact on reads Recovery strategy Median recovery
time (s)
Single-region outage Increased cross-region latency Failover to nearest 45
healthy region
Inter-region link degrada- Higher tail latency, occasional ~ Latency-aware 30
tion timeouts rerouting with
throttling

Metadata store partition Inconsistent feature schemas Read-only mode for 60
affected tenants

Backfill job failure Missing historical features Incremental replays 180
from last check-
point
Hot partition overload Elevated error rate for specific = Dynamic key re- 25
keys sharding and rate
limiting

Table 9: Failure scenarios and observed recovery behavior in the replicated system.

2. System Model and Replication Architecture

We consider aset of regions R = {1,..., R} connected by a wide-area network with time-varying delays
and occasional partitions. Entities are keyed by k € K, and features are indexed by f € F. A feature store
maintains, for each &, f, a typed state S, 7 that evolves under updates. Updates originate from writers in
multiple regions; each update is a function application on state, written as S < ¢u, S where u includes
payload and metadata such as event time, writer identity, and a causality marker. Readers are inference
services in each region that request feature vectors xy = vy ¢ re 7, for a query-specific subset F; C F.
The query path includes network hops to one or more feature store replicas, optional compute for on-the-
fly transformations, and cache layers [6]. The system target is to minimize end-to-end inference latency
while bounding the inconsistency of the returned feature vector relative to a well-defined reference state.

Replication is modeled as dissemination of update deltas or merged state among regions over a
directed overlay graph G = R, E. Each edge i, j € E has an associated random variable for transmis-
sion delay D;; and an effective bandwidth budget C;;. The overlay may be full mesh, hub-and-spoke, or
dynamically chosen based on cost and observed performance. Updates are appended to a per-partition
log, where partitions are defined by consistent hashing of keys and possibly by feature families. Each par-
tition has a replication group spanning multiple regions. Unlike classic database replication that treats
values as opaque bytes, our model requires that each feature value has an associated merge semantics
[7]. Therefore, the replica state is not only a materialized map M : k, f +— Sy r, but also a metadata
store H that records causality markers, version vectors, or hybrid logical clocks sufficient to support
deterministic merging and bounded staleness estimation.

A crucial aspect is the connection between feature inconsistency and model error. Let the inference
model be a function gy : RI7al — R™ with parameters 6, producing scores or probabilities. If a reader
obtains an inconsistent feature vector Zj, rather than a reference x3, the prediction difference can be
bounded using local sensitivity. For differentiable gy, a first-order approximation yields

9T — goxy, = Joxy T — %, 2.1)
where Jy is the Jacobian. For scalar outputs, one may summarize sensitivity by per-feature weights w ¢k

derived from gradients or from learned attribution models. This motivates an inconsistency cost defined
as

Ek, Ty, w} = er wik py (T, f,0% ¢) (2.2)
q

6 CLASSICALLIBRARY

where py is a feature-specific discrepancy metric [8]. For numeric features, pra,b = |a — b| or a — b2;
for categorical sets, py may be a Jaccard distance; for embeddings, pra,b =1— % or ||a—bl|2. The
system goal is to keep EE below a threshold while also meeting latency SLOs. Importantly, the system
does not need the exact Jacobian at runtime; it can use coarse sensitivity estimates, quantiles, or feature
importance proxies computed offline, then refreshed periodically.

The reference state x;; is defined relative to an event-time aligned, globally merged state at a chosen
watermark. Because global instantaneous truth is often ill-defined under partitions and late events, we
define x}t, 0 as the state obtained by incorporating all updates with event time at most ¢ — § and with
deduplication semantics applied, where § is a safety margin. This aligns with common streaming practice
where results are considered final after a lateness bound. Under this definition, a read at wall-clock time
t is allowed to be stale up to § in event time, and the system can quantify and budget that staleness
[9]. For inference, § might be small but nonzero; for training data generation,) may be larger to ensure
determinism.

The architecture separates three planes: an update plane that ingests events and applies feature-
specific update functions, a replication plane that disseminates deltas and merges states across regions,
and a read plane that serves feature vectors with optional consistency constraints. In the update plane,
each writer region applies updates locally to minimize write latency and produce a local replica state.
The replication plane then ships either deltas, compressed sufficient statistics, or periodic snapshots. The
read plane can use local state, consult remote replicas, or require quorum responses depending on the
selected consistency mode [10]. A metadata service maintains per-partition summaries of replication
lag, conflict frequency, and causal frontier information, enabling the read plane to decide whether local
reads satisfy the requested freshness constraints.

Storage is organized around a log-structured representation to support high write throughput from
streams and backfills. Each partition maintains an append-only update log with sequence numbers, and a
materialized state store. The state store may be an LSM-tree keyed by &, f plus a version dimension. To
support merging and conflict-free semantics, the stored value is typically a structured state that includes
both the feature payload and merge metadata, such as per-writer components for counters, bounded histo-
ries for time-series, or vector clocks [11]. While this increases storage overhead, it enables convergence
without coordination and permits fast incremental compaction that folds deltas into a canonical form.

The replication plane uses anti-entropy protocols to ensure eventual dissemination. In practice, repli-
cation can be a combination of push-based streaming of new log segments, pull-based repair when gaps
are detected, and gossip of causal frontiers. The causal frontier can be summarized by a vector ¢; € N7
at region ¢, where c;r indicates the highest sequence number from region r that has been incorporated.
Vector clocks provide precise causality but can be large when R is large; hybrid logical clocks or dotted
version vectors can reduce overhead. The system can also maintain per-partition scalar watermarks for
common cases, accepting that this reduces precision but may suffice when conflicts are rare or when
deterministic merge rules handle concurrent updates safely [12].

3. Latency-Aware Consistency Control

Traditional consistency levels are described qualitatively, but latency-aware feature serving requires
quantitative control that explicitly accounts for tail latency, network variability, and the model impact
of staleness. We define a read policy 7 that maps a query context to a set of replica contacts and accep-
tance conditions. The context includes region ¢, query feature subset F,, entity key k, and a latency
budget L,ax derived from the inference service. A policy returns a plan specifying whether to read
local only, read local with fallback, read from the nearest among a subset of regions, or perform a quo-
rum read requiring responses from multiple regions. It also specifies a freshness constraint expressed in
terms of a causal frontier or watermark.

Let T;_. ; be the random variable for round-trip time from region 4 to replica j including serialization
and queuing. A read plan that contacts a set A C R and waits for the g-th fastest response has latency

CLASSICALLIBRARY 7

approximately equal to the g-th order statistic of {7;_,; : j € A} plus local processing. The expected
tail latency at percentile o can be modeled by distributional assumptions or empirically estimated [13].
For policy selection, it is useful to work with a conservative bound:

Pa (rjneaéc Ti—)j) < max Poli—j, 3.1

where B is the set of replicas whose responses are required. Although loose, this bound supports safe
admission control. The plan must satisfy p_ latency < L,y for a chosen « such as 99%.

Freshness is captured by a staleness measure. Let F;k, f, ¢ be the causal frontier of region i for key-
feature pair k, f at wall-clock time t¢. For vector-clock-like metadata, F; can be a set of incorporated
update identifiers; for watermark-like metadata, it can be a scalar event-time watermark [14]. Define the
reference frontier F'*k, f, t as the frontier that would exist in a hypothetical globally merged state under
the chosen lateness bound. Staleness can be quantified as the missing mass of updates:

Aik, f,t = |F*k, f,t\ Fik, f,t], (3.2

or, for event-time watermarks, as A; = max0, W* — W, where W is a watermark. A read is considered
acceptable under a bounded-staleness constraint 7 if A; < 7. The challenge is that determining A;
exactly may require global knowledge [15]. Therefore, the system uses estimators based on replication
lag statistics, per-region frontiers, and probabilistic bounds derived from observed delay distributions.

We define a probabilistic freshness guarantee of the form PrAk, f,t < 7p > 1 — €y, where 7
and €y can vary per feature based on sensitivity. A latency-aware controller chooses 77 and the read
plan to satisfy both latency and freshness constraints. When the local replica likely violates freshness,
the plan may contact an additional replica that is known to be ahead in the relevant causal dimension.
The controller can maintain, for each partition and region, a predicted lag distribution L and choose
contacts accordingly.

To connect these decisions to model impact, consider a per-feature staleness-to-error curve ed,
where 4 is staleness in seconds or in missing updates. This curve can be learned offline by replay exper-
iments: take historical traffic, serve features at varying staleness levels, and measure prediction drift or
downstream business metrics [16]. The controller then solves a constrained optimization problem per
query class:

s

min E wyresATk, f,t ABE [bytesﬂ (3.3)
feF,
st pogy (latencyr) < Limax, Pr[ATk, f,it <7f] >1—¢; Vf € Fy. (3.4)

Here AT denotes staleness induced by policy 7, and Ap encodes a cost on cross-region traffic. This is a
multi-objective problem; the weighted sum is one scalarization, while a Pareto frontier can be estimated
by sweeping Ap or by imposing a bandwidth constraint. The controller can implement an online algo-
rithm that updates 7 based on observed latency and freshness outcomes using stochastic approximation.
For instance, with a policy parameter vector 7, one may apply a mirror-descent style update:

. ~ 1
ne1 = argmin (V.Jyne, 1) — Dyn, s, (3.5
neQ Tt

where jt is an empirical objective incorporating latency violations and staleness penalties, Dy is a
Bregman divergence, and Q encodes feasible policy constraints. Such an update can be implemented
without differentiating through the full system by using bandit feedback: sampling alternative policies
on a small traffic fraction and estimating gradients from counterfactual outcomes [17]. Safety requires
conservative constraints so that exploration does not violate SLOs; this can be enforced via Lagrange

8 CLASSICALLIBRARY

multipliers that increase rapidly on violations:
L7, u = Berrorrm [max (O,pgg%latencyﬂ — Lmax) , Ml = [Mt B Ut] , 3.6)

where v; is an observed violation magnitude and - denotes projection onto nonnegative reals.

Consistency control also interacts with caching. A local cache can dramatically reduce latency, but
caching stale values can amplify inconsistency if cache invalidation is delayed. The system can maintain
per-feature cache TTLs tied to staleness budgets 7, and can invalidate or refresh based on causal frontier
advances [18]. If the store exposes a compact frontier token, the cache can tag each entry with the token
and validate it cheaply. When replication lag increases due to network congestion, the controller may
reduce TTLs for sensitive features and increase them for insensitive ones to preserve overall latency
while keeping error bounded.

An additional complexity arises from multi-feature queries. A query feature vector combines multiple
features that may be stored in different partitions or even different systems (for example, a low-latency
online store plus a graph store). Achieving a consistent cut across features is expensive if done by global
snapshots [19]. Instead, the system can aim for a bounded skew constraint, where the difference in
frontiers among features does not exceed a tolerance. Let uy denote the frontier token for feature f
returned by a read. A skew metric can be defined as maxy jc 7, duy, ug, where d is a frontier distance
such as event-time difference. The read policy can enforce a skew bound by selecting replicas or by
waiting for lagging features up to a deadline. This resembles deadline-aware barrier synchronization,
but with per-feature slack derived from sensitivity weights. The controller can choose which features to
wait for and which to serve stale based on the marginal value of freshness relative to the marginal cost
in latency [20].

4. Conflict-Free Resolution and Feature Semantics

Conflict resolution is the core mechanism that allows low-latency local writes while maintaining deter-
ministic convergence across regions. The central principle is to represent each feature as a state in a
join-semilattice when feasible, so that merging is associative, commutative, and idempotent. When a
feature cannot be naturally expressed as a semilattice, the design expands the state to include sufficient
metadata so that the merge becomes a semilattice join on the expanded space, or it uses a deterministic
resolution rule that is stable under reordering and duplication. This section defines a typed feature alge-
bra that supports common feature patterns in production and relates merge semantics to correctness and
cost.

For monotone counters and sums, a classic construction is a grow-only counter or a PN-counter
[21]. Each region maintains a component ¢” € N and the global count is ,. ¢". The merge operation is
componentwise maximum:

R /R)

cud = (maxc', ¢!, . maxc®,)| valuec = R 4.1

r=1

This yields convergence without coordination and tolerates duplicate dissemination. For increments that
may be negative, a PN-counter maintains two grow-only vectors p and n and computes ,.p” — n". This
supports conflict-free aggregation for features like net purchase counts, net balance changes in a bounded
domain, or certain time-window approximations when paired with decay mechanisms.

For sets of categorical tokens such as recently viewed items, wishlisted categories, or membership
in cohorts, add-wins or remove-wins observed-remove sets can capture concurrent updates. However,
features frequently require bounded-size sets such as top- K lists or recency-based truncations [22]. Pure
CRDT sets do not directly encode top-K semantics because truncation is non-monotone. One approach
is to represent a bounded recency set as a map from item to a timestamped score and define merge as
pointwise maximum on scores, followed by deterministic truncation during read materialization. Let the
state be m : Z — R where 7 is the item universe and m is the latest event-time timestamp observed for

CLASSICALLIBRARY 9

item 7. The merge is
m Um’i = maxmi, m’s, “4.2)

which is a semilattice join. The bounded set returned to inference is then TopKm, K by timestamp.
This separates convergence from presentation [23]. The cost is that the map can grow large; therefore,
compaction and approximate representations are needed, such as retaining only items above a decaying
threshold or using sketches to approximate membership with bounded false positives.

Time-windowed aggregates such as counts in the last hour or sums in the last day are common and
are a source of subtle inconsistency. A naive representation as a scalar with increments and decrements
is not conflict-free because window eviction is non-monotone and depends on time. A more robust
representation is a ring buffer of bucketed counts keyed by time intervals. Let bucket width be A and
number of buckets be B, representing a horizon H = BA [24]. The state is an array a € NBxR
where ab, r is the count for bucket b contributed by region r. Each update increments the component
corresponding to its bucket and writer region. Merge is componentwise maximum as in counters:

ala’ : ab,r < maxab,r,a’b,r. 4.3)

The read computes the window sum by selecting buckets whose time range overlaps the desired window
and summing over r. Bucket rotation is monotone if bucket indices are derived from absolute time mod-
ulo B but with versioning to avoid reuse ambiguity; a common technique is to tag each bucket with an
epoch number that increases when the bucket wraps [25]. The state then stores pairs epoch, count-vector
and merges by taking the larger epoch, breaking ties by max on the vector. This yields deterministic
convergence even under out-of-order delivery, at the expense of larger metadata.

For last-write-wins scalar features such as profile attributes or latest device type, the usual approach
is to attach a timestamp and pick the max. However, timestamps can be inconsistent across regions
due to clock skew. Hybrid logical clocks provide a partially ordered time that respects causality while
approximating wall time. An HLC value is a pair p, [where p is physical time and [is a logical counter
[26]. Comparison is lexicographic. Each update assigns an HLC based on local clock and last seen HLC.
Merge selects the value with the higher HLC. This is deterministic and robust to moderate skew; under
extreme skew, physical time can dominate and create anomalies, so the system can cap physical jumps
and rely more on logical increments. In feature contexts, LWW semantics should be used only when it
matches the meaning of the feature; otherwise, it can silently drop concurrent updates that should be
aggregated [27].

Embedding-like vector features pose special challenges. Consider an embedding v € R¢ representing
user preferences, updated by incremental learning steps or by aggregating item embeddings. Concurrent
updates from different regions should ideally combine rather than overwrite. If updates are additive
gradients, a natural conflict-free merge is to maintain a sum of gradient deltas and apply them to a
base vector. Let the state be vy, g where vg is a checkpoint vector and ¢ € R¥* % stores per-region
accumulated gradient sums. Merge is componentwise addition on g after ensuring idempotence via per-
region sequence tracking. If each region maintains a monotonically increasing sequence number s, for
its gradient deltas, the state can store s,., g, per region and merge by taking the max s, and associated
gr [28]. The materialized embedding is v = vg , g,. To control drift and numeric stability, periodic
checkpoints can fold g into vg and reset components.

When vector features are maintained as exponential moving averages, conflict-free merges must
respect weighting. Suppose each region produces updates Av, Aw where Aw is an effective weight, and
the feature value is a weighted average v = ﬁ—sj. Then the state is the pair of sufficient statistics s, w with
seRYandw € R>q, merged by addition with idempotence ensured by per-region sequence metadata.
This yields a well-defined result independent of arrival order. Additionally, it provides a backprop-
friendly representation: if v = sw, derivatives with respect to s and w are analytic, and the update plane

10 CLASSICALLIBRARY

can incorporate learned adjustments without needing global coordination [29]. The system can also com-
press s via quantization or low-rank approximations when d is large. For example, maintain s ~ UXz
where U € R?*" is a shared basis, £ € R"*" diagonal, and z € R" per key, with 7 < d. Updates then
apply to z in the reduced space. A basis can be learned offline via PCA or randomized SVD over repre-
sentative embeddings, then deployed to all regions. If U is fixed, merging reduced coefficients remains
additive and conflict-free, and the reconstruction error is bounded by the truncated singular spectrum.

Approximate sketches provide conflict-free representations for high-cardinality features such as dis-
tinct counts, heavy hitters, or set similarity [30]. For approximate distinct counts, a HyperLogLog-like
sketch can be merged via register-wise maximum, which is a semilattice join. For frequency estimation,
count-min sketches can be merged by addition if idempotence is ensured at the delta level; alternatively,
they can be merged via max for certain monotone formulations. The system must translate sketch error
into model error. If a feature value ¢ is an estimate of true count ¢ with ¢ > c and error bound ¢ —c < e N
with probability 1 — 9, then the contribution to inconsistency cost can incorporate this uncertainty. A
Bayesian-ish treatment models c as a random variable with posterior interval and propagates it through
gp using linearization:

Var(go) ~ Joz Covi JpZ ', (4.4)

where Covz includes sketch-induced variance and replication-induced staleness variance. This supports
decisions that trade a small increase in uncertainty for significant latency savings.

Not all features admit pure conflict-free semantics [31]. Consider features derived from joins against
mutable dimension tables, or features representing the maximum of a sliding window with deletions. In
such cases, one can often define a deterministic resolution by carrying additional history or by encod-
ing operations rather than state. An operation-based approach replicates updates as operations that are
designed to commute, possibly after transforming them. For example, a sliding maximum can be repre-
sented by maintaining a multiset of candidate values with timestamps and using a deterministic rule that
discards dominated candidates. The merge combines candidate sets via union and then prunes using a
deterministic dominance relation [32]. Although pruning is non-monotone, if the dominance relation
ensures that pruned elements can never become maximal in the future, the overall join can still be made
monotone on an expanded state that includes all candidates up to a bounded horizon. This is an instance
of storing a sufficient set of non-dominated elements, analogous to maintaining a Pareto frontier of
candidates.

Conflict-free resolution also must handle late-arriving events and backfills. Backfills can introduce
updates with older event times that change aggregates. If the state is defined over event time with appro-
priate bucketing, late updates simply increment older buckets, and merges remain valid [33]. For features
that are defined over processing time rather than event time, late updates may violate expectations; thus,
the system should either avoid such definitions for replicated features or record both event time and
processing time and define the feature semantics explicitly. A practical compromise is to define feature
values for inference in processing time but to compute them via event-time state with a bounded lateness
d, thereby producing stable semantics and making staleness measurable.

5. Optimization Formulations, Complexity, and Approximation Guarantees

Latency-aware consistency and conflict-free resolution provide building blocks, but the overall sys-
tem must choose replication topology, dissemination rates, compaction aggressiveness, and read
strategies under resource constraints. These choices can be posed as optimization problems with multi-
objective trade-offs among latency, inconsistency, bandwidth, and compute. Several subproblems are
computationally hard, motivating approximation algorithms and heuristics with measurable bounds
[34].

CLASSICALLIBRARY 11

A basic design choice is the replication overlay G = R, E and per-edge replication rates. If each
partition log produces a stream of deltas with rate A, then choosing edges to minimize expected prop-
agation delay subject to bandwidth constraints resembles a minimum-cost flow problem. Let 2% ; be the
rate allocated on edge 4, j for partition p, and let ¢;; be the per-byte cost. A simplified objective is to
minimize total cost while ensuring that each region receives updates within a target delay. If delay is
approximated by inverse rate for a queueing link, one obtains a convex-like relaxation, but the true sys-
tem has discrete batching and stochastic variability. Even with simplifications, selecting a sparse overlay
to reduce operational complexity while meeting delay targets is related to directed Steiner tree or facility
location variants. For example, if one designates a subset of relay regions to forward updates, choosing
the minimal set of relays that covers all destinations within latency bounds reduces to set cover [35].
This implies NP-hardness of optimal overlay selection in general. A reduction can be sketched by map-
ping each potential relay to a set of destinations it can reach within the bound; selecting relays to cover
all destinations with minimum cost is set cover, which is NP-hard.

Read strategy selection can also be hard when queries span multiple partitions and features with
different sensitivity weights. Consider a query that requires contacting a subset of partitions, each of
which can be served from multiple replicas with different latency and freshness characteristics. If one
must choose a replica per partition to minimize total latency while keeping aggregate inconsistency
below a bound, the problem resembles a knapsack variant [36]. Let each choice a for a partition have
cost t, (latency contribution) and value u, (freshness utility). Minimizing latency subject to utility
constraints is NP-hard in general by reduction from knapsack. This motivates using greedy heuristics,
Lagrangian relaxation, or dynamic programming approximations when the number of partitions per
query is moderate.

A practical approach is to decompose optimization into per-feature and per-partition decisions with
periodic global adjustments. The system can compute per-feature sensitivity weights w and per-feature
staleness budgets 7 offline, then enforce them online with local policies [37]. For example, a con-
troller might assign each feature to one of a small set of consistency classes, such as local-only,
local-with-fallback, nearest-remote, or quorum. If there are C' classes, the decision space reduces to

F — {1,...,C}. One can fit this mapping by minimizing an empirical objective over traces:
min) (gqc AL ﬁqc AB gqc), (GH))
c queries q

where Eq estimates inconsistency cost,]A)q penalizes latency SLO violations, and gq estimates Cross-
region bandwidth. This is a discrete optimization; one can use coordinate descent, simulated annealing,
or integer programming on a compressed feature set. Because features can be numerous, the system can
cluster features by sensitivity and update patterns, reducing dimensionality. Embedding-based clustering
of features can be computed from co-access statistics: build a feature co-access graph where vertices
are features and edge weights reflect co-occurrence in queries, then embed the graph using spectral
methods [38]. Let A be the adjacency matrix and compute a low-rank embedding via truncated SVD
A ~ U,.X,.V,T, then cluster rows of U, X2, This supports grouping features that tend to be fetched
together, improving consistency planning and cache behavior.

When continuous control is desired, one may optimize dissemination rates. Suppose each partition
p in region % produces deltas of size b, bytes at rate)\, and these must be transmitted to other regions.
Let rf . be the fraction of deltas sent directly from to j, with the remainder forwarded via intermediates.
The expected propagation delay to j can be approximated by a path delay, and one can select paths by
shortest path algorithms on expected delays. However, expected delay is not sufficient when tail behavior
matters. One can define an effective edge weight as the a-quantile of delay, w;; = p,D;;, and compute
shortest paths on w;; to minimize tail propagation. This yields a deterministic plan, but it may overload

12 CLASSICALLIBRARY

certain edges [39]. A min-cost flow formulation with edge capacities can distribute load:

i i Yij 52
min i,jEEc” Yij (5.2)
Apbp, @ = sourcep
At P =< i = sink 5.3
° j:i,jeEf” j:ji€E Ut Apbps Sm_p (5-3)
0, otherwise
) 5 < vij, 0<yi; <Cij. 5.4

Here fipj is flow for partition p and y;; is reserved capacity. In practice, partitions have multiple sinks,
and replication is many-to-many; the formulation can be extended with super-sinks or by solving per-
source distributions. The complexity is high, but periodic approximate solutions can guide rate limits
and relay choices.

Conflict-free state often increases payload size, which impacts bandwidth. Compression and coding
are therefore part of optimization [40]. If updates are delta-encoded and entropy-coded, the expected
bits per update is at least the entropy of the delta distribution. Let A be a random variable for the update
payload after canonicalization. Shannon bounds imply that any prefix-free code has expected length
E¢A > HA. Thus, improving canonicalization to reduce entropy is as important as selecting a code. For
example, bucketed time-series states can produce sparse deltas; run-length encoding of zero buckets
reduces entropy. For embedding deltas, quantization to ¢ bits per component reduces size by a factor of
32q compared to float32, at the cost of quantization error [41]. The system can select ¢ per feature based
on sensitivity, framing it as a rate-distortion problem. If distortion is measured by mean squared error
and rate is bits, one can define

min wy Dyrqy st Ryqy < Bpudget; 5.5)
a f f

where D is expected distortion and Ry is expected rate. Even if closed-form D is unknown, it can be
empirically measured. A greedy allocation based on marginal distortion reduction per bit is a practical
heuristic [42].

Approximate sketches introduce probabilistic error. The system must incorporate these errors into
end-to-end guarantees. For count-min sketches with width w and depth d, the estimate ¢z satisfies
ér < cx eN with probability at least 1 — § where € ~ ew and § ~ e~%. This yields a tunable trade-
off between memory and error. If the feature store uses sketches for replicated state, merge operations
are efficient: addition for operation-based sketches or elementwise max for certain monotone variants.
However, staleness compounds sketch error because missing updates reduce /N and thus reduce the bias
bound, but they also produce systematic undercount relative to the reference [43]. Therefore, the total
discrepancy can be decomposed as

éx —c*x = (6x - clocalz) (clocalx - c*x), (5.6)

sketch error replication staleness

where cjocq 18 the exact count that would be obtained from the updates incorporated locally. Bounding
each term separately enables conservative guarantees. For inference, conservative bounds may be too
pessimistic; thus, the controller can use empirical distributions rather than worst-case bounds to allocate
budgets.

Query planning across multi-region replicas can be framed as a dynamic program on a DAG repre-
senting dependencies among features and transformations. Suppose a query requires a set of raw features
Fo and derived features computed by transformations 7, forming a DAG where nodes are intermediate
feature sets. Each node u can be materialized at certain regions with associated latency and freshness
profiles, or computed on the fly with compute cost [44]. The planner chooses where to read and where

CLASSICALLIBRARY 13

to compute. If the DAG is acyclic and the number of transformation choices per node is bounded, one
can compute an optimal plan by DP over topological order using a cost function that combines latency
and inconsistency. Let C'u, r be the cost to obtain node w at region 7. Then

Cu,7= min (lato nerro Cv, 1), (5.7
option o€ Ou,r vepredu
where 7, is the region from which predecessors are obtained under option o. The planner can incorporate
deadlines by truncating options whose latency exceeds remaining budget [45]. While this DP can be
expensive for large graphs, queries typically involve tens to hundreds of features, and feature families
can be grouped. Approximation can further reduce complexity by limiting the set of candidate regions
to the nearest few and by caching DP results for common query templates.

6. Systems Engineering: Storage Internals, Distributed Execution, and Performance

Achieving predictable tail latency while maintaining mergeable semantics requires careful performance
engineering across storage, networking, and execution. The system must support high write rates from
streaming pipelines, high read QPS from inference, and background compaction and replication, all
while avoiding interference that inflates p99 latency. This section describes a practical design centered on
log-structured storage, structured state encoding, batching and backpressure, and multi-tenant isolation.

The primary storage engine is an LSM-tree or similar log-structured store, chosen for write through-
put and compaction-based maintenance [46]. Keys are composed as partition, k, f, with optional
sharding by feature family to separate hot and cold features. Values store the typed state plus merge meta-
data. To minimize read amplification, the engine maintains a materialized view for frequently accessed
features, potentially in a separate column family with aggressive compaction. For large structured states
such as ring buffers or per-item timestamp maps, the engine can store a compacted representation plus a
small delta log, enabling fast updates by appending deltas and periodic folding. This resembles a mini-
LSM per key: a sequence of recent deltas plus a base snapshot, with merging during reads or during
background compaction. The design must ensure that read-time merging does not dominate latency;
thus, it is crucial to cap the number of deltas to merge and to prioritize compaction for hot keys [47].

Encoding is a major determinant of both bandwidth and CPU. Typed states can be encoded using
fixed-layout binary formats to avoid parse overhead. For vectors, use quantized formats with SIMD-
friendly dequantization. For maps, use sorted arrays of key-value pairs with delta-encoded keys and
variable-byte coding for timestamps. Compression can be applied at the block level in the LSM and at
the replication message level [48]. To reduce CPU on the read path, compression choices should favor
fast decompression. A common approach is to use lightweight compression for hot data and stronger
compression for cold historical data. Since feature stores frequently maintain multi-version data for
training, older versions can be compressed more aggressively without affecting inference latency.

Replication dissemination is implemented as streaming of log segments. Each partition maintains a
local append-only log of updates (or merged deltas) with monotonically increasing offsets [49]. Repli-
cation consumers in other regions fetch segments and apply them to their local state. To support at-least-
once delivery with idempotent application, each update carries an identifier such as source region, offset.
For operation-based updates, idempotence is natural. For state-based CRDT merges, repeated merges
are safe. For certain mixed cases, the receiver tracks the highest applied offset per source region, enabling
duplicate suppression. This tracking can be maintained per partition to avoid large per-key metadata [50].
Late updates from backfills may arrive as special streams; they can be treated as separate sources with
separate offsets, preserving idempotence.

Distributed execution for updates must handle ordering and concurrency. Within a partition, updates
can be applied in log order for each source, but different sources can interleave. Because merges are
commutative for most feature types, strict ordering is unnecessary for correctness, though it can affect
intermediate materializations. For LWW features, the ordering is determined by HLC, not by arrival [51].
For bucketed aggregates, ordering within buckets is irrelevant. Therefore, the update plane can process

14 CLASSICALLIBRARY

updates in parallel and rely on merge logic to converge. This simplifies throughput scaling. Nevertheless,
careful engineering is needed to avoid contention on hot keys. Techniques include sharding hot keys
by feature family, applying updates in micro-batches, and using lock-free or striped-lock structures for
in-memory memtables [52].

The read path must minimize network hops and avoid blocking on slow replicas. A typical imple-
mentation maintains a local replica in each region, with reads served locally when possible. The
latency-aware controller may choose to consult a remote replica for sensitive features when local fresh-
ness is insufficient. To avoid paying multiple network round trips per feature, the system batches feature
reads and routes them to replicas by partition. A query fan-out to many partitions can be expensive;
thus, the system can collocate commonly co-accessed features, guided by the co-access graph embed-
ding discussed earlier [53]. When collocation is not possible, the system uses asynchronous fan-out with
a deadline: it issues requests in parallel and returns the best available values by the deadline, possibly
with freshness annotations. For models that can tolerate missing features, the system can return partial
vectors with defaults. However, defaults change model behavior; thus, the design prefers serving stale-
but-present values over missing values for many features, unless missingness is explicitly handled in
training.

Caching is integrated as a two-level mechanism: an in-process cache at inference services for
extremely hot keys and a regional cache near the feature store for general hot sets. Cache entries store
both values and frontier tokens. On a cache hit, the system can accept the value if the token satisfies
the current staleness budget; otherwise it triggers a refresh [54]. This avoids coarse TTLs that either
waste freshness or risk excessive staleness. Cache admission can be guided by a cost model: cache keys
with high read frequency and high remote-read cost, and avoid caching large states that are expensive
to store. For embedding vectors, caching quantized forms can reduce memory footprint, with optional
dequantization at use time.

Isolation and multi-tenancy matter because feature stores serve multiple models and teams. Back-
ground compaction and replication can interfere with inference reads [55]. The system should implement
priority scheduling: inference reads are high priority, update ingestion is medium priority, and com-
paction and repair are low priority but must make progress. Resource governance can be implemented
via token buckets for CPU, disk I/O, and network. For example, replication bandwidth per edge can be
rate-limited, and compaction can be paused under high tail latency. This interacts with freshness; thus,
the controller must consider that throttling replication can increase staleness. A stability mechanism
is to allocate a minimum replication bandwidth to sensitive feature partitions and allow less sensitive
partitions to fall behind during overload [56].

Conlflict-free state can bloat storage, so compaction and pruning policies are essential. For per-item
timestamp maps, the system can apply deterministic pruning rules that preserve correctness for the
intended feature semantics. For example, if the feature returns top- K most recent items, any item with
timestamp below the K -th most recent can be discarded, provided that future merges cannot resurrect
it with a higher timestamp unless a new update occurs, in which case it will reappear. This pruning can
be applied per region and during merge; since merge takes max timestamps, discarding old timestamps
is safe as long as the pruning threshold is computed conservatively. For ring buffers, epochs prevent
ambiguity on wrap-around, and old epochs can be discarded once they fall beyond the lateness bound
[57]. For vector sufficient statistics, periodic checkpointing folds sums into a base and clears per-region
components, reducing metadata. Checkpointing must be coordinated carefully to preserve convergence;
a safe method is to checkpoint by writing a new base with an associated frontier token and keeping the
old components until all regions have acknowledged incorporation of the checkpoint marker, akin to a
distributed garbage collection barrier.

Backpressure and overload handling are crucial. Under surges, replication lag increases, causing reads
to require more remote fetches, which further increases load, risking a feedback loop. The controller
should detect this regime via lag and tail latency metrics and shift to a degraded mode where it serves
local stale values for lower-sensitivity features and reduces remote fetches [58]. This is a deliberate
trade-off: protect latency SLOs while accepting increased inconsistency, but do so in a measured way

CLASSICALLIBRARY 15

that keeps high-sensitivity features fresher. The design can incorporate per-feature criticality classes so
that under overload, critical features retain remote fetch budgets while noncritical features are served
locally. This is similar to load shedding but applied to consistency.

Security and compliance are also intertwined with multi-region replication. Some features may be
restricted to certain regions [59]. The system must enforce placement constraints that limit where state
can be stored and where reads can be served from. This can be expressed as constraints in the opti-
mization: for each feature f, allowed regions are Ry C R, and replication edges must not violate
data residency. Similarly, encryption and key management can add latency; thus, encryption should be
performed with hardware acceleration where possible, and replication messages should be batched to
amortize overhead. Auditability requires that the system logs policy decisions, frontier tokens served,
and conflict resolutions in a way that supports later analysis without recording sensitive raw values
unnecessarily.

7. Evaluation Methodology and Reproducibility

A system centered on latency-aware consistency and semantics-based conflict resolution must be evalu-
ated not only on throughput and latency, but also on staleness distributions, conflict rates, convergence
behavior, and model impact. Reproducible evaluation requires controlled workloads, trace-driven experi-
ments, and fault injection that reflects real multi-region behavior [60]. This section outlines an evaluation
plan that can be executed in staging environments and partially reproduced with open traces or synthetic
generators.

Workloads should capture the heterogeneity of feature pipelines. Update workloads include high-rate
streams with small deltas, periodic batch recomputations, and occasional large backfills. Read workloads
include high-QPS inference queries with a stable feature subset, plus background reads for monitor-
ing and training data extraction. Trace-driven replay is preferable: record update and read streams with
timestamps, key distributions, and feature access patterns, then replay them into a testbed with config-
urable region latencies and failures [61]. When traces are unavailable, synthetic generators should match
key popularity distributions (often heavy-tailed), temporal burstiness, and feature co-access patterns. A
co-access graph can be generated with community structure to mimic model-specific feature bundles.

Metrics must include end-to-end inference latency percentiles, especially 99% and 99.9%, and must
separate the contributions of network, storage, and compute. Freshness metrics include event-time and
wall-clock staleness distributions per feature, measured as differences in watermarks or missing update
counts. Conflict metrics include the rate of concurrent updates detected by causality metadata, the
distribution of conflict types by feature class, and the cost of merge operations in CPU and memory.
Convergence metrics include time-to-converge under normal conditions and under partitions, and diver-
gence magnitude during partitions [62]. Because the system aims to relate staleness to model impact,
evaluation should measure prediction drift. One approach is to take a fixed model and compare outputs
under reference features versus served features. The reference can be computed by running a centralized
merge with a generous lateness bound and full update incorporation. Prediction drift can be summarized
by mean absolute difference, KL divergence for probabilistic outputs, or ranking changes for recommen-
dation outputs. Importantly, drift should be reported by traffic slices, because sensitivity may vary by
user segment or context [63].

Fault injection is necessary to test multi-region behavior. Scenarios include increased latency on
certain inter-region links, partial packet loss, one region becoming unavailable, and partitions that isolate
subsets of regions. The replication plane should be tested for repair behavior: after a partition heals, how
quickly do replicas converge, and what is the impact on read latency as catch-up traffic competes for
resources. In addition, clock skew scenarios should be tested to validate HLC behavior for LWW features.
Backfill scenarios should be tested by injecting historical updates that overlap with current streams
and measuring whether aggregates and derived features remain stable [64]. The evaluation should also
include overload scenarios where update rates spike and replication lag grows, to test the controller’s
degraded modes and ensure that latency SLO protection behaves as intended.

16 CLASSICALLIBRARY

Reproducibility requires that experiments are parameterized and that all relevant configurations are
logged. This includes replication overlay, bandwidth limits, compaction settings, cache policies, con-
troller parameters, and feature typing definitions. The system should provide a deterministic mode for
debugging where randomness is controlled and scheduling is simplified, allowing repeated runs to be
comparable. For conflict-free state, deterministic convergence should be validated by replaying the same
update stream in different orders and verifying that final states match bit-for-bit for semilattice-based
features and match within defined tolerances for approximate features and quantized vectors [65]. To
support this, each feature type should have a conformance test suite that validates associativity, commuta-
tivity, and idempotence of merge, as well as semantic invariants such as monotonicity of certain derived
values. For approximate sketches, reproducibility should specify random seeds for hash functions and
confirm that merge results are independent of dissemination order.

A critical part of evaluation is separating improvements due to semantic merges from improvements
due to policy control. Ablation can be performed by fixing conflict resolution semantics and varying con-
sistency policies, and then fixing policies and varying feature typing and merge rules. Another axis is
comparing the latency-aware controller to static consistency classes [66]. Static baselines might include
local-only eventual reads, always-quorum reads, and nearest-region reads without freshness checks. The
controller’s benefit should be reflected in reduced tail latency for the same prediction drift, or reduced
drift for the same latency. Because model impact can be noisy, evaluation should include confidence
intervals derived from repeated trace segments or bootstrap sampling. Where possible, online A/B exper-
iments can validate trace-derived results, but they must be carefully limited to avoid user harm; staging
or shadow evaluation is typically safer for early validation.

Finally, the evaluation should report resource costs: cross-region bandwidth, storage overhead from
typed state, CPU overhead from merge operations, and energy proxies such as CPU time and network
bytes [67]. The system’s design aims to allocate these costs where they buy the most reduction in incon-
sistency error, so reporting per-feature or per-feature-family breakdowns is informative. Even without
external references, results should include sufficient detail for an informed reader to replicate the testbed:
region topology, RTT distributions, bandwidth caps, machine types, dataset sizes, and workload rates.

8. Conclusion

Multi-region replication for feature pipelines requires more than choosing between strong and weak con-
sistency. Feature stores sit at the boundary between distributed systems and statistical learning, where
the cost of staleness depends on feature semantics and model sensitivity, and where tail latency domi-
nates user experience. This paper presented a framework that couples latency-aware consistency control
with conflict-free, semantics-grounded resolution [68]. The system model treats features as typed merge-
able state, enabling deterministic convergence under concurrent updates, late arrivals, and replication
reordering. Consistency is expressed as probabilistic freshness constraints and skew tolerances that can
be selected per feature and per workload slice, guided by sensitivity estimates that connect staleness
to prediction drift. Optimization formulations capture multi-objective trade-offs among latency, incon-
sistency, bandwidth, and compute, while acknowledging NP-hardness in overlay and plan selection
and motivating practical approximations. Systems engineering details emphasize log-structured storage,
structured encoding, batching, caching with frontier tokens, and resource isolation to protect inference
tail latency. The evaluation methodology focuses on reproducible measurement of latency, freshness,
conflict behavior, convergence, and model impact under trace replay and fault injection. The overall
approach supports predictable multi-region feature serving without requiring global coordination on the
critical path, while keeping inconsistency measurable and bounded in ways that align with the semantics
of features and the requirements of inference workloads [69].

CLASSICALLIBRARY 17

References

[1] N. Zbitnev, D. Shishlyannikov, and D. Gridin, “Probabilistic block cipher for distributed systems,” Journal of Physics:
Conference Series, vol. 1117, pp. 012011—, 11 2018.

[2] A.R. Pratama, W. Widyawan, A. Lazovik, and M. Aiello, “Multi-user low intrusive occupancy detection,” Sensors (Basel,
Switzerland), vol. 18, pp. 796—, 3 2018.

[3] P. Foytik and S. Shetty, Blockchain for Distributed Systems Security - Blockchain Evaluation Platform. Wiley, 3 2019.

[4] E. Collini, F. I. Kurniadi, P. Nesi, and G. Pantaleo, “Context-aware retrieval augmented generation using similarity validation
to handle context inconsistencies in large language models,” IEEE Access, pp. 1-1, 1 2025.

[5] F.Durén, S. Eker, S. Escobar, N. Marti-Oliet, J. Meseguer, R. Rubio, and C. Talcott, “Programming open distributed systems
in maude,” in Proceedings of the 26th International Symposium on Principles and Practice of Declarative Programming,
pp. 1-12, ACM, 9 2024.

[6] C. Marcelino, S. Gollhofer-Berger, T. Pusztai, and S. Nastic, “Cosmos: A cost model for serverless workflows in the 3d
compute continuum,” in 2025 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 106-113, IEEE, 6
2025.

[7] F. Hackett, S. Hosseini, R. Costa, M. Do, and I. Beschastnikh, “Compiling distributed system models with pgo,” in Pro-
ceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2, pp. 159175, ACM, 1 2023.

[8] M. Bisen, “Integration technology of distributed system based on multi-objective hotopy algorithm,” Distributed Processing
System, vol. 3, 7 2022.

[9] R. Malik, S. Kim, X. Jin, C. Ramachandran, J. Han, I. Gupta, and K. Nahrstedt, “MIr-index: An index structure for fast
and scalable similarity search in high dimensions,” in International Conference on Scientific and Statistical Database
Management, pp. 167-184, Springer, 2009.

[10] A. V. Vesa, S. Vlad, R. Rus, M. Antal, C. Pop, I. Anghel, T. Cioara, and I. Salomie, “Iccp - human activity recognition
using smartphone sensors and beacon-based indoor localization for ambient assisted living systems,” in 2020 IEEE 16th
International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 205-212, IEEE, 9 2020.

[11] C. Zhu, S. Wang, X. Fan, X. Deng, S. Liu, Y. He, and C. Wu, “Blockchain-enhanced federated learning for secure and
intelligent consumer electronics : An overview,” IEEE Consumer Electronics Magazine, pp. 1-12, 1 2025.

[12] R. Gajanin, A. Danilenka, A. Morichetta, and S. Nastic, “Towards adaptive asynchronous federated learning for human
activity recognition,” in Proceedings of the 14th International Conference on the Internet of Things, pp. 38-46, ACM, 11
2024.

[13] O. Pavliuk, M. Medykovskyy, R. Cupek, and M. Mishchuk, “Modern methods of data preprocessing to increase the accuracy
of agv battery discharge forecast,” in 2024 IEEE 19th International Conference on Computer Science and Information
Technologies (CSIT), pp. 1-4, IEEE, 10 2024.

[14] Y. Tan and Z. Mi, “Performance analysis and optimization of nvidia h100 confidential computing for ai workloads,” in 2024
IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA), pp. 1426-1432, IEEE, 10
2024.

[15] J. Pennekamp, P. Weiler, M. Bodenbenner, M. Sudmann, I. Koren, I. Kunze, M. Fey, D. Wolfschlidger, C. Brecher, R. H.
Schmitt, and K. Wehrle, “Confmod: A simple modeling of confidentiality requirements for inter-organizational data sharing,”
in NOMS 2025-2025 IEEE Network Operations and Management Symposium, pp. 1-6, IEEE, 5 2025.

[16] I. Schagaev, Distributed Systems: Maximizing Resilience, pp. 249-266. Springer International Publishing, 7 2019.
[17] S. C. Voinea, S. Vladov, and F. Rensing, “Coronaz: another distributed systems project.,” 2 2021.

[18] A. Desai, A. Phanishayee, S. Qadeer, and S. A. Seshia, “Compositional programming and testing of dynamic distributed
systems,” Proceedings of the ACM on Programming Languages, vol. 2, pp. 159-30, 10 2018.

[19] N. Rathore and J. Rathore, “Efficient checkpoint algorithm for distributed system,” International Journal of Engineering in
Computer Science, vol. 1, pp. 59-66, 7 2019.

18 CLASSICALLIBRARY

[20] S. Avasthi and S. L. Tripathi, “Distributed system architecture and computing models,” 11 2025.

[21] C. Gao and T. Braun, “Two-stage hybrid edge caching framework for 360° vr video,” in 2025 IEEE 26th International
Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1-10, IEEE, 5 2025.

[22] M. Rafailescu, “Fault tolerant leader election in distributed systems,” Zenodo (CERN European Organization for Nuclear
Research), 12 2022.

[23] L. Hunhold and J. Quinlan, “Evaluation of bfloat16, posit, and takum arithmetics in sparse linear solvers,” in 2025 [EEE
32nd Symposium on Computer Arithmetic (ARITH), pp. 61-68, IEEE, 5 2025.

[24] R. Chandrasekar, R. Suresh, and S. Ponnambalam, “Evaluating an obstacle avoidance strategy to ant colony optimization
algorithm for classification in event logs,” in 2006 International Conference on Advanced Computing and Communications,
pp. 628-629, IEEE, 2006.

[25] R. Sukharev, O. Lukyanchikov, E. Nikulchev, D. Biryukov, and I. Ryadchikov, “Methods and tools for profiling and control
of distributed systems,” IOP Conference Series: Materials Science and Engineering, vol. 312, pp. 012024—, 3 2018.

[26] “Proceedings of the 1st international symposium on parallel computing and distributed systems,” in 2024
International Symposium on Parallel Computing and Distributed Systems (PCDS), pp. 1-1, IEEE, 9 2024.

[27] Z. Zhao, M. Wu, H. Chen, and B. Zang, “Characterization and reclamation of frozen garbage in managed faas workloads,”
in Proceedings of the Nineteenth European Conference on Computer Systems, pp. 281-297, ACM, 4 2024.

[28] P. Raith, S. Nastic, and S. Dustdar, “Simuscale: Optimizing parameters for autoscaling of serverless edge functions through
co-simulation,” in 2024 IEEE 17th International Conference on Cloud Computing (CLOUD), pp. 305-315, IEEE, 7 2024.

[29] F. Fernindez-Bravo Pefiuela, J. Arjona Aroca, F. Muifioz-Escoi, Y. Yatsyk Gavrylyak, I. Illan Garcia, and J. Bern-
abéu-Aubdn, “Delta: A modular, transparent, and efficient synchronization of dlts and databases,” International Journal
of Network Management, vol. 34, 8 2024.

[30] P. Bellini, P. Nesi, and G. Pantaleo, “Tot-enabled smart cities: A review of concepts, frameworks and key technologies,”
Applied Sciences, vol. 12, pp. 1607-1607, 2 2022.

[31] T. Srinivasan, R. Chandrasekar, V. Vijaykumar, V. Mahadevan, A. Meyyappan, and A. Manikandan, “Localized tree change
multicast protocol for mobile ad hoc networks,” in 2006 International Conference on Wireless and Mobile Communications
(ICWMC’06), pp. 44-44, IEEE, 2006.

[32] O. V. Talaver and T. A. Vakaliuk, “Reliable distributed systems: review of modern approaches,” Journal of Edge Computing,
vol. 2, pp. 84-101, 5 2023.

[33] L. Su, X. Wang, and L. Wang, “A resilience analysis method for distributed system based on complex network,” in 2021
IEEE International Conference on Unmanned Systems (ICUS), pp. 238-243, IEEE, 10 2021.

[34] P. K. Donta, I. Murturi, V. C. Pujol, B. Sedlak, and S. Dustdar, “Exploring the potential of distributed computing continuum
systems,” Computers, vol. 12, pp. 198-198, 10 2023.

[35] Y. Braidiz, D. Efimov, A. Polyakov, and W. Perruquetti, “On robustness of finite-time stability of homogeneous affine
nonlinear systems and cascade interconnections,” International Journal of Control, pp. 1-11, 9 2020.

[36] K. Gorokhovskyi, O. Zhylenko, and O. Franchuk, “Distributed system technical audit,” NaUKMA Research Papers.
Computer Science, vol. 3, pp. 69-74, 12 2020.

[37] T. Kharkovskaia, “Design of interval observers for uncertain distributed systems,” 12 2019.

[38] R.Chandrasekar and T. Srinivasan, “An improved probabilistic ant based clustering for distributed databases,” in Proceedings
of the 20th International Joint Conference on Artificial Intelligence, IJCAI, pp. 2701-2706, 2007.

[39] M. Broy, “Concurrent distributed systems beyond monotonicity,” 1 2024.

[40] E. B. Gulcan, J. Neto, and B. K. Ozkan, “Generalized concurrency testing tool for distributed systems,” in Proceedings of
the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 1861-1865, ACM, 9 2024.

[41] S. Gorai, Decentralization without Blockchains, pp. 24-32. Productivity Press, 8 2024.

CLASSICALLIBRARY 19

[42] Y. Yang, D. Du, H. Song, and Y. Xia, “On-demand and parallel checkpoint/restore for gpu applications,” in Proceedings of
the ACM Symposium on Cloud Computing, pp. 415-433, ACM, 11 2024.

[43] N.Benmoussa, M. F. Amr, S. Ahriz, K. Mansouri, and E. Illoussamen, “Outlining a model of an intelligent decision support
system based on multi agents,” Zenodo (CERN European Organization for Nuclear Research), 6 2018.

[44] S. H. Haeri and P. V. Roy, “Purely functional distributed systems programming,” 10 2020.
[45] C. Akmut, “6.824 ’distributed systems’ (special 4),” 12 2023.

[46] V. Matkovic, M. Josten, and T. Weis, “Optical token transmission for secure iot device discovery and control in ubiquitous
environments,” in Companion of the 2025 ACM International Joint Conference on Pervasive and Ubiquitous Computing,
pp. 1530-1533, ACM, 10 2025.

[47] J. Raffety, B. Stone, J. Svacina, C. Woodahl, T. Cerny, and P. Tisnovsky, Multi-source Log Clustering in Distributed Systems,
pp. 31-41. Germany: Springer Singapore, 4 2021.

[48] A. Labutkina, A. Selezneva, T. John, and D. Hausheer, “Multiobjective path optimization for deadline-aware multipath
over scion,” in 2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN),
pp. 56-62, IEEE, 5 2024.

[49] “Three-layer distributed system based on bayesian classifier,” Distributed Processing System, vol. 3, 10 2022.

[50] B.Sedlak, V. C.Pujol, P. K. Donta, and S. Dustdar, “Active inference on the edge: A design study,” in 2024 IEEE International
Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops),
pp. 550-555, IEEE, 3 2024.

[51] T. Maalouf, “Performance optimizations of nosql databases in distributed systems,” 12 2020.

[52] V. Vijaykumar, R. Chandrasekar, and T. Srinivasan, “An obstacle avoidance strategy to ant colony optimization algorithm
for classification in event logs,” in 2006 IEEE Conference on Cybernetics and Intelligent Systems, pp. 1-6, IEEE, 2006.

[53] X. Song, R. Chen, H. Song, Y. Zhang, and H. Chen, “Unified and near-optimal multi-gpu cache for embedding-based deep
learning,” ACM Transactions on Computer Systems, vol. 44, pp. 1-32, 11 2025.

[54] M. Goudarzi, Q. Deng, and R. Buyya, Resource management in edge and fog computing using FogBus2 framework, pp. 17—
52. The Institution of Engineering and Technology, 5 2024.

[55] N. Bronson, A. Aghayev, A. Charapko, and T. Zhu, HotOS - Metastable failures in distributed systems. ACM, 6 2021.
[56] V. K. Yadav, “Improve the scalability of system through distributed system,” 3 2021.

[57] J. Kostler, H. P. Reiser, F. J. Hauck, and G. Habiger, “Fluidity: Location-awareness in replicated state machines,” in
Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, pp. 192-201, ACM, 3 2023.

[58] C. Ankapanaidu, “Distributed system in cloud audit data storage,” International Journal of Big Data Security Intelligence,
vol. 4, pp. 1-6, 6 2018.

[59] F. Ansari and A. Afzal, A Grid-Connected Distributed System for PV System, pp. 919-924. Springer Singapore, 1 2021.
[60] J. M. Diament, “Com3800: Intro to distributed systems,” 9 2019.

[61] P. M. Moretti, Approximations for Distributed Systems, pp. 55-68. CRC Press, 9 2024.

[62] K. Karthikeyan, S. Hemalatha, and S. Vignesh, “Introduction to distributed systems,” 11 2025.

[63] M. Itmi and A. E. Hami, “Distributed system approach to experiment regional competitiveness,” Computer Science &
Information Technology, pp. 103—-109, 2 2018.

[64] Y.Liu, T. Xu,Z. Mi, Z. Hua, B. Zang, and H. Chen, “Cps: A cooperative para-virtualized scheduling framework for manycore
machines,” in Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 4, pp. 43-56, ACM, 3 2023.

[65] T. Pollinger, A. V. Craen, C. Niethammer, M. Breyer, and D. Pfliiger, “Leveraging the compute power of two hpc systems for
higher-dimensional grid-based simulations with the widely-distributed sparse grid combination technique,” in Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1-14, ACM, 11
2023.

20 CLASSICALLIBRARY

[66] R. Malik, C. Ramachandran, I. Gupta, and K. Nahrstedt, “Samera: a scalable and memory-efficient feature extraction
algorithm for short 3d video segments.,” in IMMERSCOM, p. 18, 2009.

[67] G.R. S. Martinez, “Soa distributed systems architecture,” Scientia et Technica, vol. 26, pp. 328-334, 9 2021.

[68] F.N. Al-Wesabi, H. G. Iskandar, and M. M. Ghilan, “Improving performance in component based distributed systems,” ICST
Transactions on Scalable Information Systems, vol. 6, pp. 159357—, 7 2019.

[69] “Evaluation of safety and survivability of distributed system using complexity proportionality assessment (copras) method,”
Journal on Innovations in Teaching and Learning, vol. 4, pp. 24-33, 9 2025.

	Introduction
	System Model and Replication Architecture
	Latency-Aware Consistency Control
	Conflict-Free Resolution and Feature Semantics
	Optimization Formulations, Complexity, and Approximation Guarantees
	Systems Engineering: Storage Internals, Distributed Execution, and Performance
	Evaluation Methodology and Reproducibility
	Conclusion

